In Vitro Methods for Studying Human Placental Amino Acid Transport

Placental Plasma Membrane Vesicles
  • Jocelyn D. Glazier
  • Colin P. Sibley
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 122)

Abstract

Isolated plasma membrane vesicles from human placenta allow transporter-mediated mechanisms across individual plasma membranes to be identified and characterized in vitro. This approach is reliant on isolating each of the trophoblast plasma membranes, either the maternalfacing microvillous plasma membrane (MVM) or the fetal-facing basal membrane (BM) in a relatively pure form. Purity of the isolated trophoblast plasma membranes can be confirmed by the use of protein membrane markers, which have a polarized distribution to either membrane. The isolated trophoblast plasma membranes are then encouraged to vesiculate by applying a shear force, to yield enclosed plasma membrane vesicles across which the uptake or efflux of radiolabeled solute (e.g., amino acid) can be measured. The advantage of this technique is that it allows characterization of transporter activity and expression in a defined plasma membrane, independent of any metabolic processes, and can be utilized for a variety of different solutes. The disadvantage is that membrane transporter activities are usually measured in the absence of regulatory factors and may not be reflective of in vivo fluxes.

Key Words

Placenta syncytiotrophoblast microvillous plasma membrane basal plasma membrane vesicle transport amino acid 

References

  1. 1.
    Smith, N. C., Brush, M. G., and Luckett, S. (1974) Preparation of human placental villous surface membrane. Nature 252, 302–303.CrossRefPubMedGoogle Scholar
  2. 2.
    Glazier, J. D., Jones, C. J. P., and Sibley, C. P. (1988) Purification and Na+ uptake by human placental microvillus membrane vesicles prepared by three different methods. Biochim. Biophys. Acta 945, 127–134.CrossRefPubMedGoogle Scholar
  3. 3.
    Illsley, N. P., Wang, Z.-Q., Gray, A., Sellers, M. C., and Jacobs M. M. (1990) Simultaneous preparation of paired, syncytial, microvillous and basal membranes from human placenta. Biochim. Biophys. Acta 1029, 218–226.CrossRefPubMedGoogle Scholar
  4. 4.
    Kelley, L. K., Smith, C. H., and King, B. F. (1983) Isolation and partial characterization of the basal cell membrane of human placental trophoblast. Biochim. Biophys. Acta 734, 91–98.CrossRefPubMedGoogle Scholar
  5. 5.
    Smith, C. H. and Kamath, S. G. (1994) Trophoblast basal and microvillous membrane isolation. Placenta 15, 779–781.CrossRefPubMedGoogle Scholar
  6. 6.
    Glazier, J., Ayuk, P., Grey, A.-M., and Sides, K. (1998) Syncytiotrophoblast basal plasma membrane isolation. Placenta 19, 443–444.CrossRefPubMedGoogle Scholar
  7. 7.
    Weigensberg, A. M. and Blostein, R. (1985) Na+-coupled glycine transport in reticulocyte vesicles of distinct sideness: stoichiometry and symmetry. J. Membr. Biol. 86, 37–44.CrossRefPubMedGoogle Scholar
  8. 8.
    Jansson T. (2001) Amino acid transporters in the human placenta. Pediatr. Res. 49, 141–147.CrossRefPubMedGoogle Scholar
  9. 9.
    Kudo, Y. and Boyd, C. A. R. (2002) Human placental amino acid transporter genes: expression and function. Reproduction 124, 593–600.CrossRefPubMedGoogle Scholar
  10. 10.
    Cariappa, R., Heath-Monnig, E., and Smith, C. H. (2003) Isoforms of amino acid transporters in placental syncytiotrophoblast: plasma membrane localization and potential role in maternal/fetal transport. Placenta 24, 713–726.CrossRefPubMedGoogle Scholar
  11. 11.
    Shennan, D. B. and Reid, D. (1991) Endogenous transmembrane electrical gradients associated with human placental microvillous membrane vesicles. Exp. Physiol. 76, 277–280.PubMedGoogle Scholar
  12. 12.
    Ayuk, P. T.-Y., Sibley, C. P., Donnai, P., D’Souza, S., and Glazier, J. D. (2000) Development and polarization of cationic amino acid transporters and regulators in the human placenta. Am. J. Physiol. Cell Physiol. 278, C1162–C1171.PubMedGoogle Scholar
  13. 13.
    Mahendran, D., Donnai, P., Glazier, J. D., D’Souza, S.W., Boyd, R. D. H., and Sibley, C. P. (1993) Amino acid (system A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babies. Pediatr. Res. 34, 661–665.PubMedGoogle Scholar
  14. 14.
    Kuruvilla, A. G., D’Souza, S. W., Glazier, J. D., Mahendran, D., Maresh, M. J., and Sibley, C. P. (1994) Altered activity of system A amino acid transporter in microvillous membrane vesicles from placentas of macrosomic babies born to diabetic women. J. Clin. Invest. 94, 689–695.CrossRefPubMedGoogle Scholar
  15. 15.
    Boyd, C. A. R. and Lund, E. K. (1981) L-proline transport by brush border membrane vesicles prepared from human placenta. J. Physiol. 315, 9–19.PubMedGoogle Scholar
  16. 16.
    Dicke, J. M., Verges, D., Kelley, L. K., and Smith, C. H. (1993) Glycine uptake by microvillous and basal plasma membrane vesicles from term human placentae. Placenta 14, 85–92.CrossRefPubMedGoogle Scholar
  17. 17.
    Kudo, Y., Yamada K., Fujiwara, A., and Kawasaki, T. (1987) Characterization of amino acid transport systems in human placental brush-border membrane vesicles. Biochim. Biophys. Acta 904, 309–318.CrossRefPubMedGoogle Scholar
  18. 18.
    Johnson, L. W. and Smith, C. H. (1988) Neutral amino acid transport systems of microvillous membrane of human placenta. Am. J. Physiol. Cell Physiol. 254, C773–C780.Google Scholar
  19. 19.
    Hoeltzli, S. D. and Smith, C. H. (1989) Alanine transport systems in isolated basal plasma membrane of human placenta. Am. J. Physiol. Cell Physiol. 256, C630–C637.Google Scholar
  20. 20.
    Kudo, Y. and Boyd, C. A. R. (1990) Characterization of amino acid transport systems in human placental basal membrane vesicles. Biochim. Biophys. Acta 1021, 169–174.CrossRefPubMedGoogle Scholar
  21. 21.
    Iioka, H., Hisanaga, H., Moriyama, I. S., et al. (1992) Characterization of human placental activity for transport of L-alanine, using brush border (microvillous) membrane vesicles. Placenta 13, 179–190.Google Scholar
  22. 22.
    Kudo, Y. and Boyd, C. A. R. (2001) Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles. J. Physiol. 531.2, 405–416.CrossRefGoogle Scholar
  23. 23.
    Karl, P. I., Tkaczevski, H., and Fisher, S. E. (1989) Characteristics of histidine uptake by human placental microvillous membrane vesicles. Pediatr. Res. 25, 19–26.CrossRefPubMedGoogle Scholar
  24. 24.
    Eleno, N., Devés, R., and Boyd, C. A. R. (1994) Membrane potential dependence of the kinetics of cationic amino acid transport systems in human placenta. J. Physiol. 479.2, 291–300.Google Scholar
  25. 25.
    Furesz, T. C., Moe, A. J., and Smith C. H. (1991) Two cationic amino acid transport systems in human placental basal plasma membranes. Am. J. Physiol. Cell Physiol. 261, C246–C252.Google Scholar
  26. 26.
    Furesz, T. C., Moe, A. J., and Smith, C. H. (1995) Lysine uptake by human placental microvillous membrane: comparison of system y+ with basal membrane. Am. J. Physiol. Cell Physiol. 268, C755–C761.Google Scholar
  27. 27.
    Furesz, T. C. and Smith, C. H. (1997) Identification of two leucine-sensitive lysine transport activities in human placental basal membrane. Placenta 18, 649–655.CrossRefPubMedGoogle Scholar
  28. 28.
    Jansson, T., Scholtbach, V., and Powell, T. L. (1998) Placental transport of leucine and lysine is reduced in intrauterine growth restriction. Pediatr. Res. 44, 532–537.CrossRefPubMedGoogle Scholar
  29. 29.
    Moe, A. J. and Smith, C. H. (1989) Anionic amino acid uptake by microvillous membrane vesicles from human placenta. Am. J. Physiol. Cell Physiol. 257, C1005–C1011.Google Scholar
  30. 30.
    Hoeltzli, S. D., Kelley, L. K., Moe, A. J., and Smith, C. H. (1990) Anionic amino acid transport systems in isolated basal plasma membrane of human placenta. Am. J. Physiol. Cell Physiol. 259, C47–C55.Google Scholar
  31. 31.
    Norberg, S., Powell, T. L., and Jansson, T. (1998) Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters. Pediatr. Res. 44, 233–238.CrossRefPubMedGoogle Scholar
  32. 32.
    Miyamoto, Y., Balkovetz, D. F., Leibach, F. H., Mahesh, V. B., and Ganapathy, V. (1988) Na+ + Cl-gradient-driven, high affinity, uphill transport of taurine in human placental brush-border membrane vesicles. FEBS Lett. 231, 263–267.CrossRefPubMedGoogle Scholar
  33. 33.
    Karl, P. I., Teichberg, S. and Fisher, S. E. (1991) Na+-dependent amino acid uptake by human placental microvillous membrane vesicles: importance of storage conditions and preservation of cytoskeletal elements. Placenta 12, 239–250.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Jocelyn D. Glazier
    • 1
  • Colin P. Sibley
    • 1
  1. 1.Academic Unit of Child Health, Human Development and Reproductive Healthcare Academic GroupUniversity of Manchester, St. Mary’s HospitalManchesterUK

Personalised recommendations