Advertisement

Development of Genetically Engineered Resistant Papaya for papaya ringspot virus in a Timely Manner

A Comprehensive and Successful Approach
  • Savarni Tripathi
  • Jon Suzuki
  • Dennis Gonsalves
Part of the Methods in Molecular Biology book series (MIMB, volume 354)

Abstract

Papaya orchards throughout most of the world are severely damaged by the destructive disease caused by the papaya ringspot virus (PRSV). PRSV-resistant papaya expressing the coat protein gene (CP) of PRSV have been used in Hawaii to control PRSV since 1998. This chapter presents the experimental steps involved in the development of transgenic papaya, including transgene construction, transformation, and analysis for virus resistance of the transformed papaya. We also describe the important factors that enabled deregulation, commercialization, and adoption of transgenic papaya to occur in Hawaii in a timely manner. Transfer of this technology to other countries with the similar goal and the development of transgenic papaya in other regions of the world also are described.

Key Words

Biolistic and Agrobacterium-mediated transformation coat protein gene papaya ringspot virus pathogen-derived resistance transgenic papaya 

References

  1. 1.
    Ferreira, S. A., Mau, R. F. L., Manshardt, R., Pitz, K. Y., and Gonsalves, D. (1992) Field evaluation of papaya ringspot virus cross protection. Proc. 28th Annual Hawaii Papaya Industry Association Conference, September 29–30, pp 14–19.Google Scholar
  2. 2.
    Jensen, D. D. (1949) Papaya virus diseases with special reference to papaya ringspot. Phytopathology 39, 191–211.Google Scholar
  3. 3.
    Mau, R. F. L., Gonsalves, D., and Bautista, R. (1989) Use of cross protection to control papaya ringspot virus at Waianae. Proc. 25th Annual Papaya Industry Association Conference, 77–84.Google Scholar
  4. 4.
    Yeh, S.-D., and Gonsalves, D. (1994) Practices and perspective of control of papaya ringspot virus by cross protection, in Advances in Disease Vector Research, (Harris, K. F., ed.), Springer-Verlag, New York, pp. 237–257.Google Scholar
  5. 5.
    Yeh, S. D. and Gonsalves, D. (1984) Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74, 1086–1091.CrossRefGoogle Scholar
  6. 6.
    Powell-Abel, P., Nelson, R. S., De, B., et al. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.CrossRefGoogle Scholar
  7. 7.
    Sanford, J. C. and Johnston, S. A. (1985) The concept of parasite-derived resistance — Deriving resistance genes from the parasite’s own genome. J. Theor. Biol. 113, 395–405.CrossRefGoogle Scholar
  8. 8.
    Baulcombe, D. C., English, J., Mueller, E., and Davenport, G. (1996) Gene silencing and virus resistance in transgenic plants, in Mechanisms and applications of gene silencing (Grierson, G. W., Lycett, G. W., and Tucker, G. A., eds.) Nottingham University Press, Nottingham, pp. 127–138.Google Scholar
  9. 9.
    Beachy, R. N. (1997) Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr. Opinion Biotechnol. 8, 215–220.CrossRefGoogle Scholar
  10. 10.
    Quemada, H., L’Hostis, B., Gonsalves, D., et al. (1990) The nucleotide sequences of the 3′-terminal regions of papaya ringspot virus strains w and p. J. Gen. Virol. 71, 203–210.PubMedCrossRefGoogle Scholar
  11. 11.
    Gonsalves, D. (1998) Control of papaya ringspot virus in papaya: A case study. Ann. Rev. Phytopathol. 36, 415–437.CrossRefGoogle Scholar
  12. 12.
    Lius, S., Manshardt, R. M., Fitch, M. M. M., Slightom, J. L., Sanford, J. C., and Gonsalves, D. (1997) Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Mol. Breed. 3, 161–168.CrossRefGoogle Scholar
  13. 13.
    Ferreira, S. A., Pitz, K. Y., Manshardt, R., Zee, F., Fitch, M., and Gonsalves, D. (2002) Virus coat protein transgenic papaya provides practical control of papaya ringspot virus in Hawaii. Plant Dis. 86, 101–105.CrossRefGoogle Scholar
  14. 14.
    Gonsalves, D., Ferreira, S., Manshardt, R., Fitch, M., and Slightom, J. (1998) Transgenic virus resistant papaya: New hope for control of papaya ringspot virus in Hawaii. APSnet feature story for September 1998 on world wide web. Available at: http://www.apsnet.org/education/feature/papaya/Top.htm; accessed March 17, 2006.
  15. 15.
    Gonsalves, D. (2002) Transgenic papaya: A case study on the theoretical, and practical application of virus resistance, in Plant Biotechnology 2002 and Beyond. Proceedings of the 10th IAPTC&B Congress, (Vasil, I. K., ed.), Kluwer Academic Publishers, Orlando, FL, pp. 115–118.Google Scholar
  16. 16.
    Gonsalves, D. and Fermin, G. (2004) The use of transgenic papaya to control papaya ringspot virus in Hawaii and transfer of this technology to other countries, in Handbook of Plant Biotechnology (Christou, P. and Klee, H., eds.), John Wiley & Sons, London, pp. 1165–1182.Google Scholar
  17. 17.
    Gonsalves, D. and Ferreira, S. (2003) Transgenic papaya: a case for managing risks of papaya ringspot virus in Hawaii. Online. Available at: http://plantmanagementnetwork.org/php/elements/sum2.asp?id=2319; accessed March 17, 2006.
  18. 18.
    Fermin, G., Tennant, P., Gonsalves, C., Lee, D., and Gonsalves, D. (2004) Comparative development and impact of transgenic papayas in Hawaii, Jamaica, and Venezuela, in Transgenic Plants: Methods and Protocols, (Pena, L., ed.), The Human Press Inc., Totowa, NJ, pp. 399–430.CrossRefGoogle Scholar
  19. 19.
    Gonsalves, C., Lee, D. R., and Gonsalves, D. (2004) Transgenic virus-resistant papaya: The Hawaiian ‘Rainbow’ was rapidly adopted by farmers and is of major importance in Hawaii today. APSnet feature story for August-September 2004 on world wide web. Available at: http://www.apsnet.org/online/feature/rainbow; accessed March 17, 2006.
  20. 20.
    Gonsalves, D., Gonsalves, C., Ferreira, S., Pitz, K., Fitch, M., Manshardt, R., and Slightom, J. (2004) Transgenic virus resistant papaya: From hope to reality for controlling papaya ringspot virus in Hawaii. APSnet feature story for July 2004 on world wide web. Availablet at: http://www.apsnet.org/online/feature/ ringspot; accessed March 17, 2006.
  21. 21.
    Gonsalves, D. (2004) Transgenic papaya in Hawaii and beyond. AgBioForum 7, 36–40.Google Scholar
  22. 22.
    Ferreira, S., Pitz, K. Y., Mau, R. F. L., Sugiyama, L., and Gonsalves, D. (1992) Using mild strain cross protection to manage papaya ringspot virus in Hawaii. Phytopathology 82, 1156.Google Scholar
  23. 23.
    Yeh, S. D. and Gonsalves, D. (1985) Translation of papaya ringspot virus RNA in vitro: detection of a possible polyprotein that is processed for capsid protein, cylindrical-inclusion protein, and amorphous-inclusion protein. Virology 143, 260–271.PubMedCrossRefGoogle Scholar
  24. 24.
    Fitch, M. M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L., and Sanford, J. C. (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9, 189–194.Google Scholar
  25. 25.
    Fitch, M. and Manshardt, R. (1990) Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.). Plant Cell Rep. 9, 320–324.Google Scholar
  26. 26.
    Fitch, M. M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L., and Sanford, J. C. (1992) Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10, 1466–1472.CrossRefGoogle Scholar
  27. 27.
    Ling, K., Namba, S., Gonsalves, C., Slightom, J. L., and Gonsalves, D. (1991) Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Bio/Technology 9, 752–758.PubMedCrossRefGoogle Scholar
  28. 28.
    Yeh, S. D., Jan, F. J., Chiang, C. H., et al. (1992) Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. J. Gen. Virol. 73, 2531–2541.PubMedCrossRefGoogle Scholar
  29. 29.
    Tennant, P. F., Gonsalves, C., Ling, K. S., et al. (1994) Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology 84, 1359–1366.CrossRefGoogle Scholar
  30. 30.
    Lius, S., Manshardt, R., Gonsalves, D., Fitch, M., Slightom, J., and Sanford, J. (1994) Field test of virus resistance in transgenic papayas. Hortscience 29, 483.Google Scholar
  31. 31.
    Manshardt, R. M. (1999) ‘UH Rainbow’ papaya a high-quality hybrid with genetically engineered disease resistance. University of Hawaii College of Tropical Agriculture and Human Resources (CTAHR), New Plants for Hawaii (NPH)-1, revised. On the world wide web. Address at: http://www.ctahr.hawaii.edu/ctahr2001/PIO/FreePubs/FreePubs07.asp#NewPlantsForHawaii; accessed March 17, 2006.
  32. 32.
    Strating, A. (1996) Availability of determination of nonregulated status for papaya lines genetically engineered for virus resistance. Fed. Regist. 61, 48,663–48,664.Google Scholar
  33. 33.
    Wenslaff, T. F., and Osgood, R. V. (1999) Production of transgenic hybrid papaya seed in Hawaii. Tropical Fruit Report 1, Hawaii Agricultural Research Center. On the world wide web. Address at: http://www.hawaiiag.org/harc/HARCPB13.htm; accessed March 17, 2006.
  34. 34.
    Fitch, M. M. M., Leong, T., Akashi, L., Yeh, A., White, S., Ferreira, S., and Moore, P. (2002) Papaya ringspot virus resistance genes as a stimulus for developing new cultivars and new production systems. Acta Hort. 575, 85–91.Google Scholar
  35. 35.
    Manshardt, R. M. (1992) Papaya, in Biotechnology of Perennial Fruit Crops, (Hammerschlag, F. A. and Litz, R. E., ed.), C.A.B. International, Wallingford, England, pp. 489–511.Google Scholar
  36. 36.
    Badillo, V. (2000) Carica L. vs. Vasconcella St. Hil. (Caricaceae) con la Rehabilitación de este último. Ernstia 10, 74–79.Google Scholar
  37. 37.
    Badillo, V. M., Van den Eynden V., Van Damme, P. (2000) Carica palandensis (Caricaceae), a new species from Ecuador. Novon 10, 4–6.CrossRefGoogle Scholar
  38. 38.
    Badillo, V. (1993) Caricaceae. Segundo Esquema. Rev. Fac. Agron. (Maracay) 43, 111.Google Scholar
  39. 39.
    Sturrock, D. (1940) Tropical Fruits for Southern Florida and Cuba and Their Uses. The Arnold Arboretum of Harvard University. Jamaica Plain, MA.Google Scholar
  40. 40.
    USDA/ARS (2001) USDA nutrient data base for standard reference. Release 13. Nutrient Data Laboratory Home Page [online]. United States Department of Agriculture/Agricultural Research Service, 1999 [cited February 7, 2001]. Available from http://www.nal.usda.gov/fnic/foodcomp; accessed March 17, 2006.
  41. 41.
    FAO (2002) Available from FAO statistical database (FAO STAT). Avalable at: http://faostat.fao.org; accessed March 17, 2006.
  42. 42.
    Purcifull, D., Edwardson, J., Hiebert, E., and Gonsalves, D. (1984) Papaya ringspot virus. CMI/AAB Descriptions of Plant Viruses. No. 292. (No. 84 Revised, July 1984).Google Scholar
  43. 43.
    Shukla, D. D., Ward, C. W., and Brunt, A. A. (ed.) (1994) The Potyviridae CAB International, Wallingford, UK.Google Scholar
  44. 44.
    Bateson, M., Henderson, J., Chaleeprom, W., Gibbs, A., and Dale, J. (1994) Papaya ringspot potyvirus: isolate variability and origin of PRSV type P (Australia). J. Gen. Virol. 75, 3547–3553.PubMedCrossRefGoogle Scholar
  45. 45.
    Bateson, M. F., Lines, R. E., Revill, P., et al. (2002) On the evolution and molecular epidemiology of the potyvirus Papaya ringspot virus. J. Gen. Virol. 83, 2575–2585.PubMedGoogle Scholar
  46. 46.
    Lima, R. C. A., Souza Jr., M. T., Pio-Ribeiro, G., and Lima, J. A. A. (2002) Sequences of the coat protein gene from Brazilian isolates of Papaya ringspot virus. Fitopatol. Bras. 27, 174–180.Google Scholar
  47. 47.
    Jain, R. K., Sharma, J., Sivakumar, A. S., Sharma, P. K., Byadgi, A. S., Verma, A. K., and Varma, A. (2004) Variability in the coat protein gene of Papaya ringspot virus isolates from multiple locations in India. Arch. Virol. 149, 2435–2442PubMedCrossRefGoogle Scholar
  48. 48.
    Jain, R. K., Nasiruddin, K. M., Sharma, J., Pant, R. P., and Varma, A. (2004) First report of occurrence of Papaya ringspot virus infecting papaya in Bangladesh. Plant Dis. 88, 221.CrossRefGoogle Scholar
  49. 49.
    Silva-Rosales, L., Becerra-Leor, N., Ruiz-Castro, S., Teliz-Ortiz, D., and Noa-Carrazana, J. C. (2000) Coat protein sequence comparisons of three Mexican isolates of papaya ringspot virus with other geographical isolates reveal a close relationship to American and Australian isolates. Arch. Virol. 145, 835–843.PubMedCrossRefGoogle Scholar
  50. 50.
    Jain, R. K., Pappu, H. R., Pappu, S. S., Varma, A., and Ram, R. D. (1998) Molecular characterization of Papaya ringspot potyvirus isolates from India. Ann. Appl. Biol. 132, 413–425.CrossRefGoogle Scholar
  51. 51.
    Wang, C.-H., Bau, H.-J., and Yeh, S.-D. (1994) Comparison of the nuclear inclusion b protein and coat protein genes of five papaya ringspot virus strains distinct in geographic origin and pathogenicity. Phytopathology 84, 1205–1210.CrossRefGoogle Scholar
  52. 52.
    Wang, C.-H. and Yeh, D.-D. (1997) Divergence and conservation of the genomic RNAs of Taiwan and Hawaii strains of papaya ringspot potyvirus. Arch. Virol. 142, 271–285.PubMedCrossRefGoogle Scholar
  53. 53.
    Davis, M. J. and Ying, Z. (1999) Genetic diversity of the Papaya ringspot virus in Florida. Proc. Florida State Hort. Soc. 112, 194–196.Google Scholar
  54. 54.
    Quemada, H. D., Gonsalves, D., and Slightom, J. L. (1991) Expression of coat protein gene from cucumber mosaic virus strain C in tobacco protection against infections by CMV strains transmitted mechanically or by aphids. Phytopathology 81, 794–802.CrossRefGoogle Scholar
  55. 55.
    An, G., Ebert, P., Mitra, A., and Ha, S. (1988) Binary vectors, in Plant Molecular Biology Manual, (Gelvin, S. T. and Schilperoort, R. A., eds.), Kluwer Academic Publishers, Boston, pp. 1–19.Google Scholar
  56. 56.
    An, G. (1986) Development of plant promoter expression vectors and their use For—analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol. 81, 86–91.PubMedCrossRefGoogle Scholar
  57. 57.
    Tennant, P., Fermin, G., Fitch, M. M., Manshardt, R. M., Slightom, J. L., and Gonsalves, D. (2001) Papaya ringspot virus resistance of transgenic Rainbow and SunUp is affected by gene dosage, plant development, and coat protein homology. Eur. J. Plant Pathol. 107, 645–653.CrossRefGoogle Scholar
  58. 58.
    Cheng, Y.-H. and Yeh, S.-D. (2000) Construction and evaluation of transgenic tobacco plants expressing the coat protein gene of papaya ringspot virus with different translation leaders. Bot. Bull. Acad. Sin. 41, 1–10.Google Scholar
  59. 59.
    Smith, H. A., Swaney, S. L., Parks, T. D., Wernsman, E. A., and Dougherty, W. G. (1994) Transgenic plant virus resistance mediated by untranslatable sense RNAs: Expression, regulation, and fate of nonessential RNAs. Plant Cell 6, 1441–1453.PubMedCrossRefGoogle Scholar
  60. 60.
    Baulcombe, D. (1999) Viruses and gene silencing in plants. Arch. Virol. Suppl. 15, 189–201.PubMedGoogle Scholar
  61. 61.
    Baulcombe, D. (2002) RNA silencing. Curr. Biol. 12, R82–R84.PubMedCrossRefGoogle Scholar
  62. 62.
    Goldbach, R., Bucher, E., and Prins, M. (2003) Resistance mechanisms to plant viruses. Virus Res. 92, 207–212.PubMedCrossRefGoogle Scholar
  63. 63.
    Lines, R. E., Persley, D., Dale, J. L., Drew, R., and Bateson, M. F. (2002) Genetically engineered immunity to Papaya ringspot virus in Australian papaya cultivars. Mol. Breed. 10, 119–129.CrossRefGoogle Scholar
  64. 64.
    Bau, H. J., Cheng, Y. H., Yu, T. A., Yang, J. S., and Yeh, S. D. (2003) Broad-spectrum resistance to different geographic strains of papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93, 112–120.PubMedCrossRefGoogle Scholar
  65. 65.
    Davis, M. J. and Ying, Z. (2004) Development of papaya breeding lines with transgenic resistance to Papaya ringspot virus. Plant Dis. 88, 352–358.CrossRefGoogle Scholar
  66. 66.
    Sanford, J. C., Smith, F. D., and Russell, J. A. (1992) Optimizing the biolistic process for different biological applications. Methods Enzymol. 217, 483–509.CrossRefGoogle Scholar
  67. 67.
    Gonsalves, C., Cai, W., Tennant, P., and Gonsalves, D. (1998) Effective development of Papaya ringspot virus resistant papaya with untranslatable coat protein gene using a modified microprojectile transformation method. Acta Hort. 461, 311–314.Google Scholar
  68. 68.
    Cai, W. Q., Gonsalves, C., Tennant, P., et al. (1999) A protocol for efficient transformation and regeneration of Carica papaya L. In Vitro Cell. Dev. Biol-Plant 35, 61–69.Google Scholar
  69. 69.
    Fitch, M. (1993) High frequency somatic embryogenesis and plant regeneration from papaya hypocotyl callus. Plant Cell, Tissue Organ Cult. 32, 205–212.CrossRefGoogle Scholar
  70. 70.
    Fitch, M. M. M. (1995) III.3 Somatic Embryogenesis in Papaya, in Biotechnology in Agriculture and Forestry, (Bajaj, Y. P. S., ed.) Springer-Verlag, Berlin, Heidelberg, pp. 260–279.Google Scholar
  71. 71.
    Yu, T. A., Yeh, S. D., and Yang, J. S. (2003) Comparison of the effects of kanamycin and geneticin on regeneration of papaya from root tissue. Plant Cell, Tissue Organ Cult. 74, 169–178.CrossRefGoogle Scholar
  72. 72.
    Zhu, Y. J., Agbayani, R., and Moore, P. H. (2004) Green fluorescent protein as a visual selection marker for papaya (Carica papaya L.). Plant Cell Rep. 22, 660–667.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhu, Y. J., Agbayani, R., Jackson, M. C., Tang, C. S., and Moore, P. H. (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220, 241–250.PubMedCrossRefGoogle Scholar
  74. 74.
    Fitch, M. M. M., Manshardt, R. M., Gonsalves, D., and Slightom, J. L. (1993) Transgenic papaya plants from agrobacterium mediated transformation of somatic embryos. Plant Cell Rep. 12, 245–249.CrossRefGoogle Scholar
  75. 75.
    Cheng, Y.-H., Yang, J.-S., and Yeh, S.-D. (1996) Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with carborundum. Plant Cell Rep. 16, 127–132.CrossRefGoogle Scholar
  76. 76.
    Yang, J.-S., Yu, T.-A., Cheng, Y.-H., and Yeh, S.-D. (1996) Transgenic papaya plants from Agrobacterium-mediated transformation of petioles of in vitro propagated multishoots. Plant Cell Rep. 15, 459–464.CrossRefGoogle Scholar
  77. 77.
    Castillo, B., Smith, M. A. L., and Yadava, U. L. (1998) Plant regeneration from encapsulated somatic embryos of Carica papaya L. Plant Cell Rep. 17, 172–176.CrossRefGoogle Scholar
  78. 78.
    Fitch, M. M., Moore, P., and Gonsalves, D. (1998) Transgenic papayas to the field: New cultivars and new propagation methods. In Vitro Cell. Dev. Biol-Animal 34, 47A.Google Scholar
  79. 79.
    Lai, C.-C., Yu, T.-A., Yeh, S.-D., and Yang, J.-S. (1998) Enhancement of in vitro growth of papaya multishoots by aeration. Plant Cell, Tissue Organ Cult. 53, 221–225.CrossRefGoogle Scholar
  80. 80.
    Wang, H. L., Yeh, S.-D., Chiu, R. J., and Gonsalves, D. (1987) Effectiveness of cross-protection by mild mutants of papaya ringspot virus for control of ringspot disease of papaya in Taiwan. Plant Dis. 71, 491–497.CrossRefGoogle Scholar
  81. 81.
    Tennant, P., Gonsalves, C., Link, K., et al. (1994) Transgenic and classically cross protected papaya show limited protection against papaya ringspot virus isolates from different geographical regions. Phytopathology 84, 1375.CrossRefGoogle Scholar
  82. 82.
    Tennant, P. F. (1996) Evaluation of the resistance of coat protein transgenic papaya against papaya ringspot virus isolates and development of transgenic papaya for Jamaica. Department of Plant Pathology, Cornell University, Ithaca, NY, p. 317.Google Scholar
  83. 83.
    Chiang, C.-H. and Yeh, S.-D. (1997) Infectivity assays of in vitro and in vivo transcripts of papaya ringspot potyvirus. Bot. Bull. Academia Sinica 38, 153–163.Google Scholar
  84. 84.
    Chiang, C.-H., Wang, J.-J., Jan, F.-J., Yeh, S.-D., and Gonsalves, D. (2001) Comparative reactions of recombinant papaya ringspot viruses with chimeric coat protein (CP) genes and wild-type viruses on CP-transgenic papaya. J. Gen. Virol. 82, 2827–2836.PubMedGoogle Scholar
  85. 85.
    Wang, C.-H. and Yeh, S.-D. (1992) Nucleotide sequence comparison of the 3′-terminal regions of severe, mild and non-papaya infecting strains of papaya ringspot virus. Arch. Virol. 127, 345–354.PubMedCrossRefGoogle Scholar
  86. 86.
    Tripathi, S., Bau, H.-J., Chen, L.-F., and Yeh, S.-D. (2004) The ability of Papaya ringspot virus strains overcoming the transgenic resistance of papaya conferred by the coat protein gene is not correlated with higher degrees of sequence divergence from the transgene. Eur. J. Plant Pathol. 110, 871–882.CrossRefGoogle Scholar
  87. 87.
    Tang, C. S. (1971) Benzyl isothiocyanate of papaya fruit. Phytochemistry 10, 117–120.CrossRefGoogle Scholar
  88. 88.
    Gonsalves, C. V. (2001) Transgenic virus-resistant papaya: Farmer adoption and impact in the Puna area of Hawaii. Graduate School-Empire State College, State University of New York, Albany, p. 170.Google Scholar
  89. 89.
    Deputy, J. C., Ming, R., Ma, H., et al. (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor. Appl. Genet. 106, 107–111.PubMedGoogle Scholar
  90. 90.
    Souza Jr., M. (1999) Analysis of the resistance in genetically engineered papaya against papaya ringspot potyvirus, partical characterization of the PRSV. Brazil. Bahia isolate, and development of transgenic papaya for Brazil. Department of Plant Pathology, Cornell University, Ithaca, NY, p. 277.Google Scholar
  91. 91.
    Tennant, P. F., Ahmad, M. H., and Gonsalves, D. (2002) Transformation of Carica papaya L. with virus coat protein genes for studies on resistance to papaya ringspot virus from Jamaica. Trop. Agric. (Trinidad) 79, 105–113.Google Scholar
  92. 92.
    Fermin, G. (1996) Analisis molecular de variantes geograficos del virus de la mancha anular de la lechosa (PRV) y cloneo de diversos constructos (Molecular analysis of geographic isolates of Papaya ringspot virus (PRSV) and cloning of diverse constructs). Graduate School in Fundamental Medical Sciences, Faculty of Medicine, Universidad de Los Andes, Merida, p. 106.Google Scholar
  93. 93.
    Fermin, G., Inglessis, V., Garboza, C., Rangel, S., Dagert, M., and Gonsalves, D. (2004) Engineered resistance against PRSV in Venezuelan transgenic papayas. Plant Dis. 88, 516–522.CrossRefGoogle Scholar
  94. 94.
    Bau, H.-J., Cheng, Y.-H., Yu, T.-A., et al. (2004) Field evaluation of transgenic papaya lines carrying the coat protein gene of papaya ringspot virus in Taiwan. Plant Dis. 85, 594–599.CrossRefGoogle Scholar
  95. 95.
    Chen, G., Ye, C. M., Huang, J. C., Yu, M., and Li, B. J. (2001) Cloning of the papaya ringspot virus (PRSV) replicase gene and generation of PRSV-resistant papayas through the introduction of the PRSV replicase gene. Plant Cell Rep. 20, 272–277.CrossRefGoogle Scholar
  96. 96.
    Lomonossoff, G. P. (1995) Pathogen-derived resistance to plant viruses. Ann. Rev. Phytopathol. 33, 323–343.CrossRefGoogle Scholar
  97. 97.
    Waterhouse, P., Wang, M.-B., and Finnegan, E. (2001) Role of short RNAs in gene silencing. Trends Plant Sci. 6, 297–301.PubMedCrossRefGoogle Scholar
  98. 98.
    Fuchs, M. and Gonsalves, D. (1995) Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Technology 13, 1466–1473.CrossRefGoogle Scholar
  99. 99.
    Prins, M., De Haan, P., Luyten, R., Van Veller, M., Van Grinsven, M. Q. J. M., and Goldbach, R. (1995) Broad resistance to tospoviruses in transgenic tobacco plants expressing three tospoviral nucleoprotein gene sequences. Mol. Plant-Microbe Interact. 8, 85–91.PubMedCrossRefGoogle Scholar
  100. 100.
    Tricoli, D. M., Carney, K. J., Russell, P. F., et al. (1995) Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2, and zucchini yellow mosaic virus. Bio/Technology 13, 1458–1465.CrossRefGoogle Scholar
  101. 101.
    Pang, S.-Z., Jan, F.-J., and Gonsalves, D. (1997) Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proc. Natl. Acad. Sci. USA 94, 8261–8266.PubMedCrossRefGoogle Scholar
  102. 102.
    Jan, F.-J., Fagoaga, C., Pang, S.-Z., and Gonsalves, D. (2000) A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J. Gen. Virol. 81, 235–242.PubMedGoogle Scholar
  103. 103.
    Jan, F.-J., Fagoaga, C., Pang, S.-Z., and Gonsalves, D. (2000) A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81, 2103–2109.PubMedGoogle Scholar
  104. 104.
    Jan, F.-J., Fagoaga, C., Pang, S.-Z., and Gonsalves, D. (1998) Effect of transgene length and nontarget DNA sequence on RNA-mediated tospovirus resistance. Abstract presented at the 7th International Congress of Plant Pathology at Edinburgh, Scotland on August 9–16, 1998.Google Scholar
  105. 105.
    Fermin-Munoz, G. A. (2002) Use, application, and technology transfer of native and synthetic genes for engineering single and multiple transgenic viral resistance. Department of Plant Pathology, Cornell University, Ithaca, NY, p. 293.Google Scholar
  106. 106.
    Fermin, G. and Gonsalves, D. (2004) Control of viral diseases of papaya: Native, chimeric and synthetic transgenes to engineer resistance against Papaya ringspot virus, in Virus and Virus-Like Diseases of Major Crops in Developing Countries (Loebenstein, G. and Thottappilly, G., ed.) Kluwer Academic Press Publishers, The Netherlands, pp. 497–518.Google Scholar
  107. 107.
    Fermin, G. and Gonsalves, D. (2001) Towards the development of short synthetic genes for multiple virus resistance. Phytopathology 91, S28.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Savarni Tripathi
    • 1
  • Jon Suzuki
    • 1
  • Dennis Gonsalves
    • 1
  1. 1.US Department of AgricultureUS Pacific Basin Agricultural Research CenterHilo

Personalised recommendations