Yeast Protocol pp 171-191 | Cite as

Synthetic Genetic Array Analysis in Saccharomyces cerevisiae

  • Amy Hin Yan Tong
  • Charles Boone
Part of the Methods in Molecular Biology book series (MIMB, volume 313)

Abstract

Synthetic lethality occurs when the combination of two mutations leads to an inviable organism. Screens for synthetic lethal genetic interactions have been used extensively to identify genes whose products buffer one another or impinge on the same essential pathway. For the yeast Saccharomyces cerevisiae, we developed a method termed Synthetic Genetic Array (SGA) analysis, which offers an efficient approach for the systematic construction of double mutants and enables a global analysis of synthetic lethal genetic interactions. In a typical SGA screen, a query mutation is crossed to an ordered array of approx 5000 viable gene deletion mutants (representing ∼80% of all yeast genes) such that meiotic progeny harboring both mutations can be scored for fitness defects. This array-based approach automates yeast genetic analysis in general and can be easily adapted for a number of different screens, including genetic suppression, plasmid shuffling, dosage lethality, or suppression.

References

  1. 1.
    Guarente, L. (1993) Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet. 9, 362–366.PubMedCrossRefGoogle Scholar
  2. 2.
    Hartman, J. L., Garvik, B., and Hartwell, L. (2001) Principles for the buffering of genetic variation. Science 291, 1001–1004.PubMedCrossRefGoogle Scholar
  3. 3.
    Fay, D. S., Keenan, S., and Han, M. (2002) fzr-1 and lin-35/Rb function redundantly to control cell proliferation in C. elegans as revealed by a nonbiased synthetic screen. Genes Dev. 16, 503–517.PubMedCrossRefGoogle Scholar
  4. 4.
    Lucchesi, J. C. (1968) Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanfgaster. Genetics 59, 37–44.PubMedGoogle Scholar
  5. 5.
    Winzeler, E. A., Shoemaker, D. D., Astromoff, A., et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.PubMedCrossRefGoogle Scholar
  6. 6.
    Giaever, G., Chu, A. M., Ni, L., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.PubMedCrossRefGoogle Scholar
  7. 7.
    Giaever, G., Shoemaker, D. D., Jones, T. W., et al. (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat.Genet. 21, 278–283.PubMedCrossRefGoogle Scholar
  8. 8.
    Tong, A. H., Evangelista, M., Parsons, A. B., et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368.PubMedCrossRefGoogle Scholar
  9. 9.
    Tong, A. H., Lesage, G., Bader, G. D., et al. (2004) Global mapping of the yeast genetic interaction network. Science 303, 808–813.PubMedCrossRefGoogle Scholar
  10. 10.
    Goldstein, A. L. and McCusker, J. H. (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553.PubMedCrossRefGoogle Scholar
  11. 11.
    Ooi, S. L., Shoemaker, D. D., and Boeke, J. D. (2003) DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat. Genet. 35, 277–286.PubMedCrossRefGoogle Scholar
  12. 12.
    Mnaimneh, S., Davierwala, A. P., Haynes, J., et al. (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118, 31–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Costanzo, M., Nishikawa, J. L., Tang, X., et al. (2004) CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117, 899–913.PubMedCrossRefGoogle Scholar
  14. 14.
    Jorgensen, P., Nelson, B., Robinson, M. D., et al. (2002) High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. Genetics 162, 1091–1099.PubMedGoogle Scholar
  15. 15.
    Cheng, T. H., Chang, C. R., Joy, P., Yablok, S., and Gartenberg, M. R. (2000) Controlling gene expression in yeast by inducible site-specific recombination. Nucleic Acids Res. 28, E108.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Amy Hin Yan Tong
    • 1
  • Charles Boone
    • 1
  1. 1.Department of Medical Genetics and MicrobiologyUniversity of TorontoTorontoCanada

Personalised recommendations