An In Vivo Assay
  • Julian Charles Knight
Part of the Methods in Molecular Biology™ book series (MIMB, volume 311)


The characterization of protein-deoxyribonucleic acid (DNA) interactions occurring at an allele-specific level is important to resolving the functional consequences of genetic variation in non-coding DNA for gene expression and regulation. The approach of haplotype-specific chromatin immunoprecipitation (i.e., haploChIP) resolves in living cells relative protein-DNA binding to a particular allele through immunoprecipitation of proteins crosslinked to DNA. Single-nucleotide polymorphisms present in a heterozygous form are used as markers to differentiate allelic origin. This in turn allows resolution of specific haplotypes showing differences in relative protein occupancy. The haploChIP approach allows testing of in vitro hypotheses that a transcription factor protein shows haplotype specific occupancy. In addition, the haploChIP approach allows screening of haplotypes for differences in relative gene expression by immunoprecipitation using antibodies to phosphorylated Pol II.

Key Words

Transcription haploChIP allele-specific chromatin immunoprecipitation gene expression polymorphism RNA polymerase II 


  1. 1.
    Knight, J. C., Keating, B. J., Rockett, K. A., and Kwiatkowski, D. P. (2003) In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nat. Genet. 33, 469–475.PubMedCrossRefGoogle Scholar
  2. 2.
    Glazier, A. M., Nadeau, J. H., and Aitman, T. J. (2002) Finding genes that underlie complex traits. Science 298, 2345–2349.PubMedCrossRefGoogle Scholar
  3. 3.
    Cargill, M., Altshuler, D., Ireland, J., et al. (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22, 231–238.PubMedCrossRefGoogle Scholar
  4. 4.
    Knight, J. C. (2003) Functional implications of genetic variation in non-coding DNA for disease susceptibility and gene regulation. Clin. Sci. (Lond) 104, 493–501.CrossRefGoogle Scholar
  5. 5.
    Yan, H., Yuan, W., Velculescu, V. E., Vogelstein, B., and Kinzler, K. W. (2002) Allelic variation in human gene expression. Science 297, 1143.PubMedCrossRefGoogle Scholar
  6. 6.
    Knight, J. C., Keating, B. J., and Kwiatkowski, D. P. (2004) Allele-specific repression of lymphotoxin-alpha by activated B cell factor-1. Nat. Genet. 36, 394–399.PubMedCrossRefGoogle Scholar
  7. 7.
    Orlando, V., Strutt, H., and Paro, R. (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205–214.PubMedCrossRefGoogle Scholar
  8. 8.
    Jurinke, C., van den Boom, D., Cantor, C. R., and Koster, H. (2002) Automated genotyping using the DNA MassArray technology. Methods Mol. Biol. 187, 179–192.PubMedGoogle Scholar
  9. 9.
    Braun, A., Little, D. P., and Koster, H. (1997) Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin. Chem. 43, 1151–1158.PubMedGoogle Scholar
  10. 10.
    Takahashi, Y., Rayman, J. B., and Dynlacht, B. D. (2000) Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816.PubMedGoogle Scholar
  11. 11.
    Cowles, C. R., Joel, N. H., Altshuler, D., and Lander, E. S. (2002) Detection of regulatory variation in mouse genes. Nat. Genet. 32, 432–437.PubMedCrossRefGoogle Scholar
  12. 12.
    Weber, M., Hagege, H., Lutfalla, G., et al. (2003) A real-time polymerase chain reaction assay for quantification of allele ratios and correction of amplification bias. Anal. Biochem. 320, 252–258PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Julian Charles Knight
    • 1
  1. 1.Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK

Personalised recommendations