Advertisement

Analysis of Microarray Experiments for Pulmonary Fibrosis

  • Nilesh B. Davé
  • Naftali Kaminski
Part of the Methods in Molecular Medicine book series (MIMM, volume 117)

Abstract

Microarray technology allows the investigator to examine the simultaneous expression of thousands of genes in a given cell or tissue. Such experiments that probe tens of thousands of genes produce immense amounts of information. In recent years, there has been a steady increase in the availability of tools for analysis of microarray data. Although many commercial tools are being aggressively marketed, we mostly use shareware tools. In this chapter, we present our approach to the analysis of microarray data mainly using tools that were generated by our collaborators or that are freely available. Step-by-step explanations of software operation are provided.

Key Words

Microarrays gene expression multiple sampling bioinformatics clustering Scoregene GeneXpress GenMapp functional analysis 

References

  1. 1.
    Cojocaru, G., Friedman, N., Krupsky, M., et al. (2002) Transcriptional profiling of non-small cell lung cancer using oligonucleotide microarrays. Chest 121(3 Suppl), 44S.PubMedCrossRefGoogle Scholar
  2. 2.
    Cojocaru, G. S., Rechavi, G., and Kaminski, N. (2001) The use of microarrays in medicine. Isr. Med. Assoc. J. 3(4), 292–296.PubMedGoogle Scholar
  3. 3.
    Bullinger, L., Dohner, K., Bair, E., et al. (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med. 350(16), 1605–1616.PubMedCrossRefGoogle Scholar
  4. 4.
    Valk, P. J., Verhaak, R. G., Beijen, M. A., et al. (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 350(16), 1617–1628.PubMedCrossRefGoogle Scholar
  5. 5.
    Kaminski, N. (2003) Microarray analysis of idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 29(3 Suppl), S32–36.PubMedGoogle Scholar
  6. 6.
    Quackenbush, J. (2002) Microarray data normalization and transformation. Nat. Genet. 32(Suppl), 496–501.PubMedCrossRefGoogle Scholar
  7. 7.
    Zuo, F., Kaminski, N., Eugui, E., et al. (2002) Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Nat Acad Sci USA 99(9), 6292–6297.PubMedCrossRefGoogle Scholar
  8. 8.
    Dekel, B., Burakova, T., Arditti, F. D., et al. (2003) Human and porcine early kidney precursors as a new source for transplantation. Nat. Med. 9(1), 53–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaminski, N. and Friedman, N. (2002) Practical approaches to analyzing results of microarray experiments. Am. J. Respir. Cell Mol. Biol. 27(2), 125–132.PubMedGoogle Scholar
  10. 10.
    Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25), 14,863–14,868.PubMedCrossRefGoogle Scholar
  11. 11.
    Patel, S., Bhattacharya, S., and Lyons-Weiler, J. (2003) GEDA: a web application for the integrated analysis of global gene expression patterns in cancer. Applied Bioinformatics, in press.Google Scholar
  12. 12.
    Pasteur, L. (1854) Lecture, University of Lille, December 7.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Nilesh B. Davé
    • 1
  • Naftali Kaminski
    • 1
  1. 1.Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, Pulmonary, Allergy, and Critical Care MedicineUniversity of Pittsburgh Medical CenterPittsburgh

Personalised recommendations