Advertisement

Methods for Assessing the Molecular Mechanisms Controlling Gene Regulation

  • Richard A. Rippe
  • Branko Stefanovic
Part of the Methods in Molecular Medicine book series (MIMM, volume 117)

Abstract

Regulation of gene expression is a complex process that can be controlled at several steps, including transcription, pre-mRNA splicing and export, mRNA stability, translation, protein modification, and protein half-life. Because transcriptional regulation often involves DNA-protein interactions, several techniques are used, including nuclear run-off assays, DNase I footprinting analysis, and mobility shift assays. Together these assays can determine transcriptional rates, as well as locate, identify, and characterize DNA-protein interactions. Functional analyses to assess the role of specific regulatory regions in gene regulation often requires the introduction of reporter genes under the control of regulatory elements being investigated into mammalian cells. This is often accomplished using transient transfections or, more recently, adenovirally mediated gene delivery. Adenovirus-mediated gene delivery is useful for cells that are difficult to transfect with conventional methods, such as hepatic stellate cells, and when close to 100% of transfection efficiency is needed. Posttranscriptional regulation is often involved in regulating gene expression and may involve mRNA stabilization or translational regulation. Together, these techniques can provide information about which step a particular gene is predominantly regulated. This chapter will detail common methodology used to assess molecular mechanisms involved in controlling gene regulation.

Key Words

Gene expression gene regulation mRNA mRNA stability transcription DNase I footprinting nuclear run-off mobility shift assay adenovirus construction gene delivery transient transfection nuclear extract RNase protection assay hybridization actinomycin D reporter genes 

References

  1. 1.
    Lindquist, J. N., Marzluff, W. F., and Stefanovic, B. (2000) Fibrogenesis. III. Posttranscriptional regulation of type I collagen. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G471–476.PubMedGoogle Scholar
  2. 2.
    Stefanovic, B., Hellerbrand, C., and Brenner, D. A. (1999) Regulatory role of the conserved stem-loop structure at the 5′ end of collagen alpha1(I) mRNA. Mol. Cell Biol. 19, 4334–4342.PubMedGoogle Scholar
  3. 3.
    Stefanovic, B., Hellerbrand, C., Holcik, M., Briendl, M., Aliebhaber, S., and Brenner, D. A. (1997) Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells. Mol. Cell Biol. 17, 5201–5209.PubMedGoogle Scholar
  4. 4.
    Stefanovic, B., Lindquist, J., and Brenner, D. A. (2000) The 5′ stem-loop regulates expression of collagen alpha1(I) mRNA in mouse fibroblasts cultured in a three-dimensional matrix. Nucleic Acids Res. 28, 641–647.PubMedCrossRefGoogle Scholar
  5. 5.
    Stefanovic, B. and Brenner, D. A. (2003) 5′ stem-loop of collagen alpha 1(I) mRNA inhibits translation in vitro but is required for triple helical collagen synthesis in vivo. J. Biol. Chem. 278, 927–933.PubMedCrossRefGoogle Scholar
  6. 6.
    Stefanovic, B., Schnabl, B., and Brenner, D. A. (2002) Inhibition of collagen alpha 1(I) expression by the 5′ stem-loop as a molecular decoy. J. Biol. Chem. 277, 18,229–18,237.PubMedCrossRefGoogle Scholar
  7. 7.
    Porchet, N. and Aubert, J. P. (2000) Northern blot analysis of large mRNAs. Methods Mol. Biol. 125, 305–312.PubMedGoogle Scholar
  8. 8.
    Joyce, C. (2002) Quantitative RT-PCR. A review of current methodologies. Methods Mol. Biol. 193, 83–92.PubMedGoogle Scholar
  9. 9.
    Henttu, P. (2001) Quantification of mRNA levels using ribonuclease protection assay. Methods Mol. Biol. 169, 65–79.PubMedGoogle Scholar
  10. 10.
    Ross, J. (1996) Control of messenger RNA stability in higher eukaryotes. Trends Genet. 12, 171–175.PubMedCrossRefGoogle Scholar
  11. 11.
    Li, L. and Chaikof, E. L. (2002) Quantitative nuclear run-off transcription assay. Biotechniques 33, 1016–1017.PubMedGoogle Scholar
  12. 12.
    Srivastava, R. A. and Schonfeld, G. (1998) Measurements of rate of transcription in isolated nuclei by nuclear ‘run-off’ assay. Methods Mol. Biol. 86, 201–207.PubMedGoogle Scholar
  13. 13.
    Chodosh, L. A., Fire, A., Samuels, M., and Sharp, P. A. (1989) 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J. Biol. Chem. 264, 2250–2257.PubMedGoogle Scholar
  14. 14.
    Blaxall, B. C. and Port, J. D. (2000) Determination of mRNA stability and characterization of proteins interacting with adrenergic receptor mRNAs. Methods Mol. Biol. 126, 453–465.PubMedGoogle Scholar
  15. 15.
    Stefanovic, B., Hellerbrand, C., and Brenner, D. A. (1999) Regulatory role of the conserved stem-loop structure at the 5′ end of collagen alpha1(I) mRNA. Mol. Cell Biol. 19, 4334–4342.PubMedGoogle Scholar
  16. 16.
    Lang, A., Brenner, D. A., and Rippe, R. A. (2000) Role of NF-kB in hepatic stellate cell activation. J. Hepatol. 33, 49–58.PubMedCrossRefGoogle Scholar
  17. 17.
    Rippe, R. A., Lorenzen, S.-I., Brenner, D. A., Breindl M. (1989) Regulatory elements in the 5′ flanking region and the first intron contribute to transcriptional control of the mouse alpha 1 type I collagen gene. Mol. Cell. Biol. 9, 2224–2227.PubMedGoogle Scholar
  18. 18.
    Brenner, D. A., Rippe, R. A., Veloz, L. (1989) Analysis of the collagen a1(I) promoter. Nucl. Acids Res. 17, 6055–6064.PubMedCrossRefGoogle Scholar
  19. 19.
    Nehls, M. C., Rippe, R. A., Veloz, L., Brenner, D. A. (1991) Transcription factors NF-I and Sp1 interact with the murine collagen alpha 1(I) promoter. Mol. Cell. Biol. 11, 4065–4073.PubMedGoogle Scholar
  20. 20.
    Rippe, R. A., Almounajed, G., and Brenner, D. A. (1995) Sp1 binding activity increases in activated Ito cells. Hepatology 22, 241–251.PubMedGoogle Scholar
  21. 21.
    Rippe, R. A., Kimball, J., Breindl, M., and Brenner, D. A. (1997) Binding of USF-1 to an E-box in the 3′ flanking region stimulates a1(I) collagen gene expression. J. Biol. Chem. 272, 1753–1760.PubMedCrossRefGoogle Scholar
  22. 22.
    Tugores, A., Magness, S. T., and Brenner, D. A. (1994) A single promoter directs both housekeeping and erythroid preferential expression of the human ferrochelatase gene. J. Biol. Chem. 269, 30,789–30,797.PubMedGoogle Scholar
  23. 23.
    Yata, Y., Scanga, A. E., Gillian, A., Breindl, M., Brenner, D. A., and Rippe, R. A. (2003) The role DNase I hypersensitive sites in a1(I) collagen gene expression following an in vivo fibrogenic stimulus. Hepatology 37, 267–276.PubMedCrossRefGoogle Scholar
  24. 24.
    Reif, S., Lang, A., Lindquist, J. N., Gäbele, E., Scanga, A., Brenner, D. A., and Rippe, R. A. (2003) The role of FAK-PI3-K-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. J. Biol. Chem. 278, 8083–8090.PubMedCrossRefGoogle Scholar
  25. 25.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds.) (1989) Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  26. 26.
    Marzluff, W. F., Jr. (1978) Transcription of RNA in isolated nuclei. Methods Cell Biol. 19, 317–332.PubMedCrossRefGoogle Scholar
  27. 27.
    Srivastava, R. A. and Schonfeld, G. (1994) Quantification of absolute amounts of cellular messenger RNA by RNA-excess solution hybridization. Methods Mol. Biol. 31, 273–279.PubMedGoogle Scholar
  28. 28.
    Gurevich, V. V., Pokrovskaya, I. D., Obukhova, T. A., and Zozulya, S. A. (1991) Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Anal. Biochem. 195, 207–213.PubMedCrossRefGoogle Scholar
  29. 29.
    Zandomeni, R., Mittleman, B., Bunick, D., Ackerman, S., and Weinmann, R. (1982) Mechanism of action of dichloro-beta-D-ribofuranosylbenzimidazole: effect on in vitro transcription. Proc. Natl. Acad. Sci. USA 79, 3167–3170.PubMedCrossRefGoogle Scholar
  30. 30.
    Schreiber, E., Matthias, P., Muller, M. M., and Schaffner, W. (1989) Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucl. Acids Res. 17, 6419.PubMedCrossRefGoogle Scholar
  31. 31.
    Rippe, R. A., Brenner, D. A., and Tugores, A. (2001) Techniques to measure nucleic acid-protein binding and specificity: nuclear extract preparations, DNase I footprinting and mobility shift assays, in Nuclease Methods and Protocols (Schein, C., ed.), Humana, Totowa, NJ: pp. 459–479.CrossRefGoogle Scholar
  32. 32.
    Graham, F. L. and Prevec, L. (1992) Adenovirus-based expression vectors and recombinant vaccines. Biotechnology 20, 363–390.PubMedGoogle Scholar
  33. 33.
    He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998) A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Richard A. Rippe
    • 1
  • Branko Stefanovic
    • 1
  1. 1.Division of Gastroenterology and HepatologyUniversity of North Carolina Chapel HillChapel Hill

Personalised recommendations