Quick, Easy, Cheap, Effective, Rugged, and Safe Approach for Determining Pesticide Residues

  • Steven J. Lehotay
Part of the Methods in Biotechnology book series (MIBT, volume 19)


This chapter describes a simple, fast, and inexpensive method for the determination of pesticides in foods and potentially other matrices. The method, known as the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residues involves the extraction of the sample with acetonitrile (MeCN) containing 1% acetic acid (HAc) and simultaneous liquid-liquid partitioning formed by adding anhydrous magnesium sulfate (MgSO4) plus sodium acetate (NaAc), followed by a simple cleanup step known as dispersive solid-phase extraction (dispersive-SPE). The QuEChERS method is carried out by shaking a fluoroethylenepropylene (FEP) centrifuge tube that contains 1 mL 1% HAc in MeCN plus 0.4 g anhydrous MgSO4 and 0.1 g anhydrous NaAc per gram wet sample. The tube is then centrifuged, and a portion of the extract is transferred to a tube containing 50 mg primary secondary amine (PSA) and 50 mg C18 sorbents plus 150 mg anhydrous MgSO4 per milliliter extract (the dispersive-SPE cleanup step). Then, the extract is centrifuged and transferred to autosampler vials for concurrent analysis by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Different options in the protocol are possible depending on alternate analytical instrumentation available, desired limit of quantitation (LOQ), scope of targeted pesticides, and matrices tested.

Key Words

Food fruits gas chromatography liquid chromatography mass spectrometry pesticide residue analysis sample preparation vegetables 



Mention of brand or firm name does not constitute an endorsement by the US Department of Agriculture above others of a similar nature not mentioned.


  1. 1.
    Food and Drug Administration. (1999) Pesticide Analytical Manual Volume I: Multiresidue Methods, 3rd ed., US Department of Health and Human Services, Washington, DC. Available at: http://www.cfsan.fda.gov/~frf/pami3.html Google Scholar
  2. 2.
    Luke, M. A., Froberg, J.E., and Masumoto, H. T. (1975) Extraction and cleanup of organochlorine, organophosphate, organonitrogen, and hydrocarbon pesticides in produce for determination by gas-liquid chromatography. J. Assoc. Off. Anal. Chem. 58, 1020–1026.PubMedGoogle Scholar
  3. 3.
    Specht, W. and Tilkes, M. (1980) Gas chromatographische bestimmung von rückständen an pflanzenbehandlungsmitteln nach clean-up über gel-chromatographie und minikieselgel-säulen-chromatographie. Fresenius J. Anal. Chem. 301, 300–307.CrossRefGoogle Scholar
  4. 4.
    Lee, S. M., Papathakis, M. L., Hsiao-Ming, C. F., and Carr, J. E. (1991) Multipesticide residue method for fruits and vegetables: California Department of Food and Agriculture. Fresenius J. Anal. Chem. 339, 376–383.CrossRefGoogle Scholar
  5. 5.
    Andersson, A. and Pålsheden, H. (1991) Comparison of the efficiency of different GLC multi-residue methods on crops containing pesticide residues. Fresenius J. Anal. Chem. 339, 365–367.CrossRefGoogle Scholar
  6. 6.
    Cook, J., Beckett, M. P., Reliford, B., Hammock, W., and Engel, M. (1999) Multiresidue analysis of pesticides in fresh fruits and vegetables using procedures developed by the Florida Department of Agriculture and Consumer Services. J. AOAC Int. 82, 1419–1435.PubMedGoogle Scholar
  7. 7.
    General Inspectorate for Health Protection. (1996) Analytical Methods for Pesticide Residues in Foodstuffs, 6th ed., Ministry of Health Welfare and Sport, The Netherlands.Google Scholar
  8. 8.
    Fillion, J., Sauvé, F., and Selwyn, J. (2000) Multiresidue method for the determination of residues of 251 pesticides in fruits and vegetables by gas chromatography/mass spectrometry and liquid chromatography with fluorescence detection. J. AOAC Int. 83, 698–713.PubMedGoogle Scholar
  9. 9.
    Sheridan, R. S. and Meola, J. R. (1999) Analysis of pesticide residues in fruits, vegetables, and milk by gas chromatography/tandem mass spectrometry. J. AOAC Int. 82, 982–990.PubMedGoogle Scholar
  10. 10.
    Lehotay, S. J. (2000) Determination of pesticide residues in nonfatty foods by supercritical fluid extraction and gas chromatography/mass spectrometry: collaborative study. J. AOAC Int. 83, 680–697.PubMedGoogle Scholar
  11. 11.
    Anastassiades, M., Lehotay, S. J., Stajnbaher, D., and Schenck, F. J. (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 86, 412–431.PubMedGoogle Scholar
  12. 12.
    Lehotay, S. J., Hiemstra, M., van Bodegraven, P., and de Kok, A. (2005) Validation of a fast and easy method for the determination of more than 200 pesticide residues in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J. AOAC Int. 88, 595–614.PubMedGoogle Scholar
  13. 13.
    Lehotay, S. J., Mastovská, K., and Lightfield, A. R. (2005) Use of buffering to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J. AOAC Int. 88, 615–629.PubMedGoogle Scholar
  14. 14.
    Lehotay, S. J., Mastovská, K., and Yun, S.-J. (2005) Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrices. J. AOAC Int. 88, 630–638.PubMedGoogle Scholar
  15. 15.
    Fajgelj, A. and Ambrus, Á. (eds.) (2000) Principles and Practices of Method Validation, Royal Society of Chemistry, Cambridge, UK, pp. 179–295.CrossRefGoogle Scholar
  16. 16.
    Hill, A. R. C. and Reynolds, S. L. (1999) Guidelines for in-house validation of analytical methods for pesticide residues in food and animal feed. Analyst 124, 953–958.CrossRefPubMedGoogle Scholar
  17. 17.
    Stry, J. J., Amoo, J. S., George, S. W., Hamilton-Johnson, T., and Stetser, E. (2000) Coupling of size-exclusion chromatography to liquid chromatography/mass spectrometry for determination of trace levels of thifensulfuron-methyl and tribenuron-methyl in cottonseed and cotton gin trash. J. AOAC Int. 83, 651–659.PubMedGoogle Scholar
  18. 18.
    Erney, D. R., Gillespie, A. M., Gilvydis, D. M., and Poole, C. F. (1993) Explanation of the matrix-induced chromatographic enhancement of organophosphorus pesticides during open tubular column gas chromatography with splitless or hot on-column injection and flame photometric detection. J. Chromatogr. 638, 57–63.CrossRefGoogle Scholar
  19. 19.
    Erney, D. R. and Poole, C. F. (1993) A study of single compound additives to minimize the matrix induced chromatographic response enhancement observed in the gas chromatography of pesticide residues. J. High Resolut. Chromatogr. 16, 501–503.CrossRefGoogle Scholar
  20. 20.
    Erney, D. R., Pawlowski, T. M., and Poole, C. F. (1997) Matrix-induced peak enhancement of pesticides in gas chromatography: is there a solution? J. High Resolut. Chromatogr. 20, 375–378.CrossRefGoogle Scholar
  21. 21.
    Schenck, F. J. and Lehotay, S. J. (2000) Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food? J. Chromatogr. A 868, 51–61.CrossRefPubMedGoogle Scholar
  22. 22.
    Hajslová, J., Holadová, K., Kocourek, V., et al. (1998) Matrix-induced effects: a critical point in gas chromatographic analysis of pesticide residues. J. Chromatogr. A 800, 283–295.CrossRefGoogle Scholar
  23. 23.
    Hajslová, J. and Zrostlíková, J. (2003) Matrix effects in (ultra)trace analysis of pesticide residues in food and biotic matrices. J Chromatogr A. 1000, 181–197.CrossRefPubMedGoogle Scholar
  24. 24.
    Anastassiades, M., Mastovská, K., and Lehotay, S. J. (2003) Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. J. Chromatogr. A 1015, 163–184.CrossRefPubMedGoogle Scholar
  25. 25.
    Mastovská, K. and Lehotay, S.J. (submitted) Optimization and evaluation of analyte protectants in gas chromatographic analysis. Anal. Chem. Google Scholar
  26. 26.
    Mol, H. G., van Dam, R. C., and Steijger, O. M. (2003) Determination of polar organophosphorus pesticides in vegetables and fruits using liquid chromatography with tandem mass spectrometry: selection of extraction solvent. J. Chromatogr. A 1015, 119–127.CrossRefPubMedGoogle Scholar
  27. 27.
    Klein, J. and Alder, L. (2003) Applicability of gradient liquid chromatography with tandem mass spectrometry to the simultaneous screening for about 100 pesticides in crops. J. AOAC Int. 86, 1015–1037.PubMedGoogle Scholar
  28. 28.
    Zrostlíková, J., Hajslová, J., Poustka, J., and Begany, P. (2002) Alternative calibration approaches to compensate the effect of co-extracted matrix components in liquid chromatography-electrospray ionisation tandem mass spectrometry analysis of pesticide residues in plant materials. J. Chromatogr. A 973, 13–26.CrossRefPubMedGoogle Scholar
  29. 29.
    Niessen, W. M. A. (ed.) (2001) Current Practice of Gas Chromatography-Mass Spectrometry, Dekker, New York.Google Scholar
  30. 30.
    Mastovská, K. and Lehotay, S. J. (2003) Practical approaches to fast gas chromatography-mass spectrometry. J. Chromatogr. A 1000, 153–180.CrossRefPubMedGoogle Scholar
  31. 31.
    Cochran, J. W. (2002) Fast gas chromatography-time-of-flight mass spectrometry of polychlorinated biphenyls and other environmental contaminants. J. Chromatogr. Sci. 40, 254–268.PubMedGoogle Scholar
  32. 32.
    Niessen, W. M. (2003) Progress in liquid chromatography-mass spectrometry instrumentation and its impact on high-throughput screening. J Chromatogr A 1000, 413–436.CrossRefPubMedGoogle Scholar
  33. 33.
    Amirav, A. and Dagan, S. (1997) A direct sample introduction device for mass spectrometry studies and gas chromatography mass spectrometry analyses. Eur. Mass Spectrom. 3, 105–111.CrossRefGoogle Scholar
  34. 34.
    Lehotay, S. J. (2000) Analysis of pesticide residues in mixed fruit and vegetable extracts by direct sample introduction/gas chromatography/tandem mass spectrometry. J. AOAC Int. 83, 680–697.PubMedGoogle Scholar
  35. 35.
    Patel, K., Fussell, R. J., Goodall, D. M., and Keely, B. J. (2003) Analysis of pesticide residues in lettuce by large volume-difficult matrix introduction-gas chromatography-time of flight-mass spectrometry (LV-DMI-GC-TOF-MS). Analyst 128, 1228–1231.CrossRefPubMedGoogle Scholar
  36. 36.
    Matisová, E. and Domotorová, M. (2002) Fast gas chromatography and its use in trace analysis. J. Chromatogr A 1000, 199–221.CrossRefGoogle Scholar
  37. 37.
    Amirav, A., Gordin, A., and Tzanani, N. (2001) Supersonic gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 15, 811–820.CrossRefPubMedGoogle Scholar
  38. 38.
    Mastovská, K., Lehotay, S. J., and Hajslová, J. (2001) Optimization and evaluation of low-pressure gas chromatography-mass spectrometry for the fast analysis of multiple pesticide residues in a food commodity. J. Chromatogr. A 926, 291–308.CrossRefPubMedGoogle Scholar
  39. 39.
    Mastovská, K. and Lehotay, S. J. (submitted) Evaluation of common organic solvents for gas chromatographic analysis and stability of multiclass pesticide residues. J. Chromatogr. A. Google Scholar
  40. 40.
    Martinez Vidal, J. L., Arrebola, F. J., and Mateu-Sanchez, M. (2002) Application to routine analysis of a method to determine multiclass pesticide residues in fresh vegetables by gas chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 16, 1106–1115.CrossRefPubMedGoogle Scholar
  41. 41.
    Rosenblum, L., Hieber, T., and Morgan, J. (2001) Determination of pesticides in composite dietary samples by gas chromatography/mass spectrometry in the selected ion monitoring mode by using a temperature-programmable large volume injector with preseparation column. J. AOAC Int. 84, 891–900.PubMedGoogle Scholar
  42. 42.
    Soboleva, E. and Ambrus, Á. (2004). Application of a system suitability test for quality assurance and performance optimisation of a gas chromatographic system for pesticide residue analysis. J. Chromatogr. A 1027, 55–65.CrossRefPubMedGoogle Scholar
  43. 43.
    Young, S. J., Parfitt, C. H., Jr., Newell, R. F., and Spittler, T. D. (1996) Homogeneity of fruits and vegetables comminuted in a vertical cutter mixer. J. AOAC Int. 79, 976–980.PubMedGoogle Scholar
  44. 44.
    Lyn, J. A., Ramsey, M. H., Fussell, R. J., and Wood, R. (2003) Measurement uncertainty from physical sample preparation: estimation including systematic error. Analyst 128, 1391–1398.CrossRefPubMedGoogle Scholar
  45. 45.
    Hill, A. R. C., Harris, C. A., and Warburton, A. G. (2000) Effects of sample processing on pesticide residues in fruits and vegetables, in Principles and Practices of Method Validation (Fajgelj, A. and Ambrus, Á., eds.), Royal Society of Chemistry, Cambridge, UK, pp. 41–48.CrossRefGoogle Scholar
  46. 46.
    Maestroni, B., Ghods, A., El-Bidaoui, M., et al. (2000) Testing the efficiency and uncertainty of sample processing, in Principles and Practices of Method Validation (Fajgelj, A. and Ambrus, Á., eds.), Royal Society of Chemistry, Cambridge, UK, pp. 49–88.CrossRefGoogle Scholar
  47. 47.
    Lehotay, S. J., Aharonson, N., Pfeil, E., and Ibrahim, M. A. (1995) Development of a sample preparation technique for supercritical fluid extraction in the multiresidue analysis of pesticides in produce. J. AOAC Int. 78, 831–840.Google Scholar
  48. 48.
    Fussell, R. J., Jackson-Addie, K., Reynolds, S. L., and Wilson, M. F., (2002) Assessment of the stability of pesticides during cryogenic sample processing. 1. Apples. J. Agric. Food Chem. 50, 441–448.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Steven J. Lehotay
    • 1
  1. 1.Agricultural Research Service, US Department of AgricultureEastern Regional Research CenterWyndmoor

Personalised recommendations