Allergen Microarrays

  • Tito Bacarese-Hamilton
  • Julian Gray
  • Andrea Ardizzoni
  • Andrea Crisanti
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 114)


Allergy affects more than 25% of Western populations (1) and is estimated to be the sixth leading cause of chronic disease in the United States and Western Europe. The complexity of the condition is such that hundreds of common allergens have been described, and in order to maximize diagnostic efficiency there is an urgent clinical requirement for assays to provide multiple-allergen determination in a timely and cost-effective manner. Miniaturized immunoassays that utilize protein microarray technology now offer the possibility of circumventing most of the current limitations in the serodiagnosis of allergic disease. The heterogeneous nature of allergens presents many challenges in all aspects of developing such arrays, from immobilization of the capture molecule to detection of the bound ligand. In addition, there is no simple method of protein amplification (such as PCR for nucleic acids), and stabilization is yet a further major consideration. Notwithstanding these challenges, protein microarrays have been developed for the serodiagnosis of allergies and other complex clinical conditions. These assays exhibit good analytical and clinical performance and deliver significant advantages in convenience and cost compared with traditional ELISA test formats. This chapter details the techniques employed in the construction and processing of an allergen array specific for the serodiagnosis of allergic disease. An overview of protein microarray technology is provided and the principles that underpin the suitability for use of this technology in the identification and measurement of particular proteins in patient sera (serum profiling) are discussed.

Key Words

Protein microarray immunoassay serodiagnosis allergy signal amplification 


  1. 1.
    Hiller, R., Laffer, S., Harwanegg, C., et al. (2002) Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J. 16, 414–416.PubMedGoogle Scholar
  2. 2.
    Brown, P. O. and Botstein, D. (1999) Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Cutler, P. (2003) Protein arrays: the current state-of-the-art. Proteomics 3, 3–18.PubMedCrossRefGoogle Scholar
  4. 4.
    MacBeath, G. (2002) Protein microarrays and proteomics. Nat. Genet. 32, 526–532.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang, D., Liu, S., Trummer, B. J., et al. (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–281.PubMedCrossRefGoogle Scholar
  6. 6.
    Willats, W. G., Rasmussen, S. E., Kristensen, T., et al. (2002) Sugar-coated microarrays: a novel slide surface for the high-throughput analysis of glycans. Proteomics 2, 1666–1671.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu, H. and Snyder, M. (2003) Protein chip technology. Curr. Opin. Chem. Biol. 7, 55–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu, H., Biglin, M., Bangham, R., et al. (2001) Global analysis of protein activities using proteome chips. Science 293, 2101–2105.PubMedCrossRefGoogle Scholar
  9. 9.
    Bacarese-Hamilton, T., Bistoni, F., and Crisanti, A. (2002) Protein microarrays: from serodiagnosis to whole proteome scale analysis of the immune response against pathogenic microorganisms. Biotechniques 33, S24–S29.Google Scholar
  10. 10.
    Stoll, D., Templin, M. F., Schrenk, M., et al. (2002) Protein microarray technology. Front. Biosci. 7, 13–32.CrossRefGoogle Scholar
  11. 11.
    Kusnezow, W. and Hoheisel, J. (2002) Antibody microarrays: promises and problems. Biotechniques 33, S14–S23.Google Scholar
  12. 12.
    Schena, M., Shalon, D., Davis, R. W., et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.PubMedCrossRefGoogle Scholar
  13. 13.
    Okamoto, T., Suzuki, T. and Yamamoto, N. (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat. Biotechnol. 18, 438–441.PubMedCrossRefGoogle Scholar
  14. 14.
    Davies, C. (2001) Introduction to immunoassay principles, in The Immunoassay Handbook, 2nd ed. (Wild, D. ed.), Nature Publishing Group, London, pp. 3–40.Google Scholar
  15. 15.
    Pawlak, M., Schick, E., Bopp, M. A., et al. (2002) Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics 2, 383–393.PubMedCrossRefGoogle Scholar
  16. 16.
    Wu, G., Datar, R. H., Hansen, K. M., et al. (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19, 856–860.PubMedCrossRefGoogle Scholar
  17. 17.
    Pastinen, T. (2003) Single nucleotide polymorphism genotyping using microarrays, in Microarrays & Microplates: Applications in Biomedical Sciences (Ye, S. and Day, I. N. M., eds.), BIOS, Oxford, UK, pp. 89–108.Google Scholar
  18. 18.
    Wiltshire, S., O’Malley, S., Lambert, J., et al. (2000) Detection of multiple allergenspecific IgE’s on microarrays by immunoassay with rolling circle amplification. Clin. Chem. 46, 1990–1993.PubMedGoogle Scholar
  19. 19.
    Mendoza, L. G., McQuary, P., Mongan, A., et al. (1999) High-throughput microarraybased enzyme-linked immunosorbent assay (ELISA). Biotechniques 27, 778–788.PubMedGoogle Scholar
  20. 20.
    Weinberger, S. R., Morris, T. S., and Pawlak, M. (2000) Recent trends in protein biochip technology. Pharmacogenetics 1, 395–416.Google Scholar
  21. 21.
    Brockman, J. M., Nelson, B. P., and Corn, R. M. (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu. Rev. Phys. Chem. 51, 41–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Ekins, R. P. (1989) Multi-analyte immunoassay. J. Pharmacol. Biomed. Anal. 7, 155–168.CrossRefGoogle Scholar
  23. 23.
    Ekins, R. P., Chu, F. W., and Biggart, E. (1990) Multispot, multianalyte, immunoassay. Ann. Biol. Clin. (Paris) 48, 655–666.Google Scholar
  24. 24.
    Ekins, R. P. and Chu, F. W. (1991) Multianalyte microspot immunoassay—microanalytical “compact disk” of the future. Clin. Chem. 37, 1995–1967.Google Scholar
  25. 25.
    Engvall, E. and Perlmann, P. (1971) Enzyme linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8, 871–874.PubMedCrossRefGoogle Scholar
  26. 26.
    Walter, G., Bussow, K., Cahill, D., et al. (2000) Protein arrays for gene expression and molecular interaction screening. Curr. Opin. Microbiol. 3, 298–302.PubMedCrossRefGoogle Scholar
  27. 27.
    Bacarese-Hamilton, T., Mezzasoma, L., Ingham, C., et al. (2002) Detection of allergen-specific IgE on microarrays by use of signal amplification techniques. Clin. Chem. 48, 1367–1370.PubMedGoogle Scholar
  28. 28.
    Joos, T. O., Schrenk, M., Hopfl, P., et al. (2000) A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21, 2641–2650.PubMedCrossRefGoogle Scholar
  29. 29.
    Robinson, W. H., DiGennaro, C., Hueber, W., et al. (2002) Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301.PubMedCrossRefGoogle Scholar
  30. 30.
    Mezzasoma, L., Bacarese-Hamilton, T., Ingham, C., et al. (2002) Antigen microarrays for serodiagnosis of infectious diseases. Clin. Chem. 48, 121–130.PubMedGoogle Scholar
  31. 31.
    Wiese, R., Belosludtsev, Y., Powdrill, T., et al. (2001) Simultaneous multianalyte ELISA performed on a microarray platform. Clin. Chem. 47, 1451–1457.PubMedGoogle Scholar
  32. 32.
    Miller, J. C., Zhou, H., Kwekel, J., et al. (2003) Antibody microarray profiling of human prostate cancer sera: Antibody screening and identification of potential biomarkers. Proteomics 3, 56–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Lacour, M. (1994) Acute infections in atopic dermatitis: a clue for a pathogenic role of a Th1/Th2 imbalance? Dermatology 188, 255–257.PubMedCrossRefGoogle Scholar
  34. 34.
    Brown, W. G., Halonen, M. J., Kaltenborn, W. T., et al. (1979) The relationship of respiratory allergy, skin test reactivity, and serum IgE in a community population sample. J. Allergy Clin. Immunol. 63, 328–335.PubMedCrossRefGoogle Scholar
  35. 35.
    Shriver-Lake, L. (1998) Silane-modified surfaces for biomaterial immobilization, in Immobilized Biomolecules in Analysis (Cass, T. and Ligler, F., eds.), Oxford University Press, Oxford, pp. 1–14.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Tito Bacarese-Hamilton
    • 1
  • Julian Gray
    • 1
  • Andrea Ardizzoni
    • 1
  • Andrea Crisanti
    • 1
  1. 1.Department of Biological SciencesImperial College LondonLondonUK

Personalised recommendations