Skip to main content

X-Ray Crystallography of Protein-Ligand Interactions

  • Protocol
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 305))

Abstract

Crystal structures of protein–ligand complexes provide a detailed view of their spatial arrangement and interactions. In the case of stable, unreactive ligands, such as inhibitors or allosteric regulators, the complexes can be generated by cocrystallization or by soaking the ligand into fully grown crystals. In order to obtain highly occupied stochiometric complexes, the concentration and amount of ligand used needs to be considered. Protein complexes with reactive short-lived species that occur in chemical or binding reactions can be determined using monochromatic X-ray diffraction techniques via kinetic trapping approaches. To this end, the kinetics of the reaction has to be determined in the crystalline state and triggering methods to start the reaction need to be established. To facilitate data interpretation, the experimental conditions are usually chosen such that the peak concentration of the reactive species under investigation is maximized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hajdu J., Acharya K. R., Stuart D. I., Barford D., and Johnson L. N. (1988) Catalysis in enzyme crystals. Trends Biochem. Sci. 13, 104–109.

    Article  CAS  Google Scholar 

  2. Mozzarelli A. and Rossi G. L. (1996) Protein function in the crystal. Annu. Rev. Biophys. Biomol. Struct. 25, 343–365.

    Article  CAS  Google Scholar 

  3. Schlichting I. (2000) Crystallographic structure determination of unstable species. Acc. Chem Res. 33, 532–538.

    Article  CAS  Google Scholar 

  4. Schlichting I. and Chu K. (2000) Trapping intermediates in the crystal: ligand binding to myoglobin. Curr. Opin. Struct. Biol. 10, 744–752.

    Article  CAS  Google Scholar 

  5. Schmidt K. and Henderson R. (1995) Freeze trapping of reaction intermediates. Curr. Opin. Struct. Biol. 5, 656–663.

    Article  Google Scholar 

  6. Schmidt K. (2001) Time-resolved biochemical crystallography: a mechanistic perspective. Chem. Rev. 101, 1569–1581.

    Article  Google Scholar 

  7. Schmidt K. (1989) Time-resolved macromolecular crystallography. Annu. Rev. Biophys. Biophys. Chem. 18, 309–332.

    Article  Google Scholar 

  8. Petsko G. A. and Ringe D. (2000) Observation of unstable species in enzyme-catalyzed transformations using protein crystallography. Curr. Opin. Chem Biol. 4, 89–94.

    Article  CAS  Google Scholar 

  9. Hajdu J., Neutze R., Sjogren T., Edman K., Szoke A., Wilmouth R. C., and Wilmot C. M. (2000) Analyzing protein functions in four dimensions. Nat. Struct. Biol. 7, 1006–1012.

    Article  CAS  Google Scholar 

  10. Hajdu J. and Andersson I. (1993) Fast crystallography and time-resolved structures. Annu. Rev. Biophys. Biomol. Struct. 22, 467–498.

    Article  CAS  Google Scholar 

  11. Stoddard B. L. and Farber G. K. (1995) Direct measurement of reactivity in the protein crystal by steady-state kinetic studies. Structure 3, 991–996.

    Article  CAS  Google Scholar 

  12. Garman E. F. and Schneider T. R. (1997) Macromolecular Cryocrystallography. J.Appl. Cryst. 30, 211–237.

    Article  Google Scholar 

  13. Schlichting I. and Chu K. (2000) Trapping intermediates in the crystal: ligand binding to myoglobin. Curr. Opin. Struct. Biol. 10, 744–752.

    Article  CAS  Google Scholar 

  14. Stoddard B. L. and Farber G. K. (1995) Direct measurement of reactivity in the protein crystal by steady-state kinetic studies. Structure 3, 991–996.

    Article  CAS  Google Scholar 

  15. Hadfield A. and Hajdu J. (1994) On the photochemical release of phosphate from 3,5-dinitrophenyl phosphate in a protein crystal. J. Mol. Biol. 236, 995–1000.

    Article  CAS  Google Scholar 

  16. Schlichting I. and Goody R. (1997) Triggering methods in kinetic crystallography. Methods in Enzymology 277, 467–490.

    Article  CAS  Google Scholar 

  17. Ohara P., Goodwin P., and Stoddard B. L. (1995) Direct measurement of diffusion rates in enzyme crystals by video absorbance spectroscopy. J. Appl. Cryst. 28, 829–834.

    Article  CAS  Google Scholar 

  18. Stoddard B. L. and Farber G. K. (1995) Direct measurement of reactivity in the protein crystal by steady-state kinetic studies. Structure 3, 991–996.

    Article  CAS  Google Scholar 

  19. Verschueren K. H., Seljee F., Rozeboom H. J., Kalk K. H., and Dijkstra B. W. (1993) Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363, 693–698.

    Article  CAS  Google Scholar 

  20. Singer P. T., Smalas A., Carty R. P., Mangel W. F., and Sweet R. M. (1993) The hydrolytic water molecule in trypsin, revealed by time-resolved Laue crystallography. Science 259, 669–673.

    Article  CAS  Google Scholar 

  21. Petsko G. A. (1985) Diffraction methods for biological macromolecules. Flow cell construction and use. Methods Enzymol. 114, 141–146.

    Article  CAS  Google Scholar 

  22. Douzou P. and Petsko G. A. (1984) Proteins at work: “sstop-action”s pictures at subzero temperatures. Adv. Protein Chem 36, 245–361.

    Article  CAS  Google Scholar 

  23. Douzou P. (1980) Cryoenzymology in aqueous media. Adv. Enzymol. Relat Areas Mol. Biol. 51, 1–74.

    CAS  Google Scholar 

  24. Douzou P. (1983) Cryoenzymology. Cryobiology 20, 625–635.

    Article  CAS  Google Scholar 

  25. Fulop V., Phizackerley R. P., Soltis S. M., Clifton I. J., Wakatsuki S., Erman J., Hajdu J., and Edwards S. L. (1994) Laue diffraction study on the structure of cytochrome c peroxidase compound I. Structure 2, 201–208.

    Article  CAS  Google Scholar 

  26. Gouet P., Jouve H. M., Williams P. A., Andersson I., Andreoletti P., Nussaume L., and Hajdu J. (1996) Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy. Nat. Struct. Biol. 3, 951–956.

    Article  CAS  Google Scholar 

  27. Jouve H. M., Andreoletti P., Gouet P., Hajdu J., and Gagnon J. (1997) Structural analysis of compound I in hemoproteins: study on Proteus mirabilis catalase. Biochimie 79, 667–671.

    Article  CAS  Google Scholar 

  28. Douzou P. and Balny C. (1977) Cryoenzymology in mixed solvents without cosol-vent effects on enzyme specific activity. Proc. Natl. Acad. Set USA 74, 2297–2300.

    Article  CAS  Google Scholar 

  29. Rasmussen B. F., Stock A. M., Ringe D., and Petsko G. A. (1992) Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 357, 423–424.

    Article  CAS  Google Scholar 

  30. Weyand M. and Schlichting I. (1999) Crystal structure of wild-type tryptophan synthase complexed with the natural substrate indole-3-glycerol phosphate. Biochemistry 38, 16,469–16,480.

    Article  CAS  Google Scholar 

  31. Stoddard B. L. (1996) Caught in a chemical trap. Nat. Struct. Biol. 3, 907–909.

    Article  CAS  Google Scholar 

  32. Stoddard B. L. (2001) Trapping reaction intermediates in macromolecular crystals for structural analyses. Methods 24, 125–138.

    Article  CAS  Google Scholar 

  33. Stoddard B. L. (1996) Intermediate trapping and laue X-ray diffraction: potential for enzyme mechanism, dynamics, and inhibitor screening. Pharmacol. Ther. 70, 215–256.

    Article  CAS  Google Scholar 

  34. Douzou P. (1979) The study of enzyme mechanisms by a combination of cosolvent, low-temperature and high-pressure techniques. Q. Rev. Biophys. 12, 78.

    Article  CAS  Google Scholar 

  35. Schmidt K. and Henderson R. (1995) Freeze trapping of reaction intermediates. Curr. Opin. Struct. Biol. 5, 656–663.

    Article  Google Scholar 

  36. Schmidt K. (1995) X-ray crystallography at extremely low temperatures. Biotechnology (N. Y.) 13, 133.

    Google Scholar 

  37. Schlichting I. and Chu K. (2000) Trapping intermediates in the crystal: ligand binding to myoglobin. Curr. Opin. Struct. Biol. 10, 744–752.

    Article  CAS  Google Scholar 

  38. Burzlaff N. I., Rutledge P. J., Clifton I. J., Hensgens C. M., Pickford M., Adlington R. M., Roach P. L., and Baldwin J. E. (1999) The reaction cycle of isopenicillin N synthase observed by X-ray diffraction. Nature 401, 721–724.

    Article  CAS  Google Scholar 

  39. Wilmot C. M., Hajdu J., McPherson M. J., Knowles P. F., and Phillips S. E. (1999) Visualization of dioxygen bound to copper during enzyme catalysis. Science 286, 1724–1728.

    Article  CAS  Google Scholar 

  40. Murray J. B., Szoke H., Szoke A., and Scott W. G. (2000) Capture and visualization of a catalytic RNA enzyme-product complex using crystal lattice trapping and X-ray holographic reconstruction. Mol. Cell 5, 279–287.

    Article  CAS  Google Scholar 

  41. Luecke H., Schobert B., Richter H. T., Cartailler J. P., and Lanyi J. K. (1999) Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286, 255–261.

    Article  CAS  Google Scholar 

  42. Edman K., Nollert P., Royant A., Belrhali H., Pebay-Peyroula E., Hajdu J., Neutze R., and Landau E. M. (1999) High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401, 822–826.

    Article  CAS  Google Scholar 

  43. Royant A., Edman K., Ursby T., Pebay-Peyroula E., Landau E. M., and Neutze R. (2000) Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406, 645–648.

    Article  CAS  Google Scholar 

  44. Sass H. J., Buldt G., Gessenich R., Hehn D., Neff D., Schlesinger R., Berendzen J., and Ormos P. (2000) Structural alterations for proton transloca-tion in the M state of wild-type bacteriorhodopsin. Nature 406, 649–653.

    Article  CAS  Google Scholar 

  45. Schlichting I., Berendzen J., Chu K., Stock A. M., Maves S. A., Benson D. E., Sweet R. M., Ringe D., Petsko G. A., and Sligar S. G. (2000) The catalytic pathway of cytochrome p450cam at atomic resolution. Science 287, 1615–1622.

    Article  CAS  Google Scholar 

  46. Chu K., Vojtchovsky J., McMahon B. H., Sweet R. M., Berendzen J., and Schlichting I. (2000) Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 403, 921–923.

    Article  CAS  Google Scholar 

  47. Genick U. K., Borgstahl G. E., Ng K., Ren Z., Pradervand C., Burke P. M., Srajer V., Teng T. Y., Schildkamp W., McRee D. E., Schmidt K., and Getzoff E. D. (1997) Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275, 1471–1475.

    Article  CAS  Google Scholar 

  48. Vitkup D., Ringe D., Petsko G. A., and Karplus M. (2000) Solvent mobility and the protein ‘glass’ transition. Nat. Struct. Biol. 7, 34–38.

    Article  CAS  Google Scholar 

  49. Specht A., Ursby T., Weik M., Peng L., Kroon J., Bourgeois D., and Goeldner M. (2001) Cryophotolysis of ortho-nitrobenzyl derivatives of enzyme ligands for the potential kinetic crystallography of macromolecules. Chembiochem. 2, 845–848.

    Article  CAS  Google Scholar 

  50. Ursby T., Weik M., Fioravanti E., Delarue M., Goeldner M., and Bourgeois D. (2002) Cryophotolysis of caged compounds: a technique for trapping intermediate states in protein crystals. Acta Crystallogr. D. Biol. Crystallogr. 58, 607–614.

    Article  Google Scholar 

  51. Edman K., Royant A., Nollert P., Maxwell C. A., Pebay-Peyroula E., Navarro J., Neutze R., and Landau E. M. (2002) Early structural rearrangements in the photocycle of an integral membrane sensory receptor. Structure (Camb.) 10, 473–482.

    Article  CAS  Google Scholar 

  52. Royant A., Edman K., Ursby T., Pebay-Peyroula E., Landau E. M., and Neutze R. (2000) Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406, 645–648.

    Article  CAS  Google Scholar 

  53. Chu K., Vojtchovsky J., McMahon B. H., Sweet R. M., Berendzen J., and Schlichting I. (2000) Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 403, 921–923.

    Article  CAS  Google Scholar 

  54. Ostermann A., Waschipky R., Parak F. G., and Nienhaus G. U. (2000) Ligand binding and conformational motions in myoglobin. Nature 404, 205–208.

    Article  CAS  Google Scholar 

  55. Petsko G. A. and Ringe D. (2000) Observation of unstable species in enzyme-catalyzed transformations using protein crystallography. Curr. Opin. Chem Biol. 4, 89–94.

    Article  CAS  Google Scholar 

  56. Schlichting I. (2000) Crystallographic structure determination of unstable species. Acc. Chem Res. 33, 532–538.

    Article  CAS  Google Scholar 

  57. Ringe D. and Petsko G. A. (2003) The ‘glass transition’ in protein dynamics: what it is, why it occurs, and how to exploit it. Biophys. Chem 105, 667–680.

    Article  CAS  Google Scholar 

  58. Scheidig A. J., Burmester C., and Goody R. S. (1999) The pre-hydrolysis state of p21(ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. Structure Fold. Des 7, 1311–1324.

    Article  CAS  Google Scholar 

  59. Perman B., Srajer V., Ren Z., Teng T., Pradervand C., Ursby T., Bourgeois D., Schotte F., Wulff M., Kort R., Hellingwerf K., and Schmidt K. (1998) Energy transduction on the nanosecond time scale: early structural events in a xanthopsin photocycle. Science 279, 1946–1950.

    Article  CAS  Google Scholar 

  60. Kort R., Ravelli R. B., Schotte F., Bourgeois D., Crielaard W., Hellingwerf K. J., and Wulff M. (2003) Characterization of photocycle intermediates in crystalline photoactive yellow protein. Photochem. Photobiol. 78, 131–137.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Schlichting, I. (2005). X-Ray Crystallography of Protein-Ligand Interactions. In: Ulrich Nienhaus, G. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 305. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-912-5:155

Download citation

  • DOI: https://doi.org/10.1385/1-59259-912-5:155

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-372-5

  • Online ISBN: 978-1-59259-912-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics