NanoBiotechnology Protocols pp 209-223

Part of the Methods in Molecular Biology™ book series (MIMB, volume 303) | Cite as

Real-Time Cell Dynamics With a Multianalyte Physiometer

  • Sven E. Eklund
  • Eugene Kozlov
  • Dale E. Taylor
  • Franz Baudenbacher
  • David E. Cliffel

Abstract

A technique for simultaneously measuring changes in extracellular glucose, lactate, and oxygen concentrations in conjunction with acidification rates on a Cytosensor™ Microphysiometer is described. Platinum electrodes are inserted into the standard Cytosensor plunger head and modified with enzymes and biocompatible polymeric films. The lactate and glucose oxidase enzymes catalyze the reaction of lactate and glucose. An end product of these catalyses, H2O2, is measured amperometrically. Extracellular oxygen is also measured amperometrically, while the acidification rate is measured potentiometrically by the Cytosensor. Useful information is obtained during the Cytosensor stop-flow cycles, which produce increasing or decreasing peaks, owing to the production of lactic and carbonic acid and consumption of glucose and oxygen by the cells. Fabrication of the modified sensor head and deposition of the electrode films is detailed, and the operation of the technique is described and illustrated by the simultaneous measurement of all four analytes during the addition of 20 mM fluoride to mouse fibroblast cells.

Key Words

Cellular physiology Cytosensor™ Microphysiometer enzyme electrodes oxygen acidification multianalyte Nafion 

References

  1. 1.
    Cliffel, D., Baudenbacher, F. J., Wikswo, J. P., Eklund, S., Balcarcel, R. R., and Gilligan, J. M. (2003) Device and methods for detecting the response of a plurality of cells to at least one analyte of interest. PCT Int. Appl., 123.Google Scholar
  2. 2.
    Eklund, S. E., Cliffel, D. E., Kozlov, E., Prokop, A., Wikswo, J., and Baudenbacher, F. (2003) Modification of the Cytosensor™ Microphysiometer to simultaneously measure extracellular acidification and oxygen consumption rates. Anal. Chim. Acta 496, 93–101.CrossRefGoogle Scholar
  3. 3.
    Wilson, G. S. (ed.). (2003) Bioelectrochemistry, in Encyclopedia of Electrochemistry, vol. 9 (Bard, A. J. and Stratmann, M., eds.), Wiley-VCH, Weinheim, pp. 309–340.Google Scholar
  4. 4.
    Yang, Q., Atanasov, P., and Wilkins, E. (1998) An integrated needle-type biosensor for intravascular glucose and lactate monitoring. Electroanalysis 10, 752–757.CrossRefGoogle Scholar
  5. 5.
    Karube, I. (1987) Micro-organism based sensors, in Biosensors: Fundamentals and Applications (Turner, A., Karube, I., and Wilson, G. S., eds.), Oxford University Press, Oxford, UK, pp. 471–480.Google Scholar
  6. 6.
    Karube, I., Matsunaga, T., and Suzuki, S. (1979) Microbioassay of nystatin with a yeast electrode. Anal. Chim. Acta 109, 39–44.CrossRefGoogle Scholar
  7. 7.
    Parce, J. W., Owicki, J. C., Kercso, K. M., Sigal, G. B., Wada, H. G., Muir, V. C., Bousse, L. J., Ross, K. L., Sikic B. I., and McConnell, H. M. (1989) Detection of cell-affecting agents with a silicon biosensor. Science 246, 243–247.PubMedCrossRefGoogle Scholar
  8. 8.
    Owicki, J. C., Parce, J. W., Kercso, K. M., Sigal, G. B., Muir, V. C., Venter, J. C., Fraser, C. M., and McConnell, H. M. (1990) Continuous monitoring of receptormediated changes in the metabolic rates of living cells. Proc. Natl. Acad. Sci. USA 87, 4007–4011.PubMedCrossRefGoogle Scholar
  9. 9.
    Owicki, J. C., Bousse, L. J., Hafeman, D. G., Kirk, G. L., Olson, J. D., Wada, H. G., and Parce, J. W. (1994) The light-addressable potentiometric sensor: principles and biological applications. Annu. Rev. Biophys. Biomol. Struct. 23, 87–113.PubMedCrossRefGoogle Scholar
  10. 10.
    Hafner, F. (2000) Cytosensor Microphysiometer: technology and recent applications. Biosens. Bioelectronics 15, 149–158.CrossRefGoogle Scholar
  11. 11.
    Jonnala, R. R. and Buccafusco, J. J. (2001) Inhibition of nerve growth factor signaling by peroxynitrile. J. Neurosci. Res. 63, 27–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Tammesveski, K., Kikas, T., Tenno, T., and Niinistö, L. (1998) Preparation and characteriztion of platinum coatings for long life-time BOD biosensor. Sens. Actuators 47, 21–29.CrossRefGoogle Scholar
  13. 13.
    Paliteiro, C., Pereira, M. L., and Jorge, A. M. (1991) Oxygen reduction on platinum electrodes coated with Nafion. Electrochim. Acta 9, 507–523.Google Scholar
  14. 14.
    Sittampalam, G. and Wilson, G. S. (1982) Amperometric determination of glucose at parts per million levels with immobilized glucose oxidase. J. Chem. Ed. 59, 70–73.CrossRefGoogle Scholar
  15. 15.
    Eklund, S., Taylor, D., Kozlov, A., Prokop, A., and Cliffel, D. (2004) A microphysiometer for simultaneous measurement of changes in extracellular glucose, lactate, oxygen, and acidification rate. Anal. Chem. 76, 516–527.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Sven E. Eklund
    • 1
  • Eugene Kozlov
    • 1
  • Dale E. Taylor
    • 1
  • Franz Baudenbacher
    • 1
  • David E. Cliffel
    • 1
  1. 1.Department of ChemistryVanderbilt UniversityNashville

Personalised recommendations