Advertisement

NMR- Based Structure Determination of Proteins in Solution

  • Andrzej Ejchart
  • Igor Zhukov
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is well suited to play an important part in proteomics programs because this method provides structural information at the atomic level. Nuclei of isotopes of biologically important elements display narrow reso- nance lines. Internuclear interactions, modulated by even small structural and confor- mational changes, influence line position, line shape, and intensity of signals in NMR spectra. Last but not least, NMR provides high-resolution structures in solution, allow- ing the study of proteins that fail to crystallize or comparison of differences between their crystal and solution structure (1). The potential of the NMR method, however, has not been reflected by the present number of deposited structures; less than 14% of the protein structures in the Protein Data Bank (PDB) have been determined by NMR spec- troscopy (2).

Keywords

Nuclear Magnetic Resonance Dihedral Angle Nuclear Magnetic Resonance Spectrum Nuclear Magnetic Resonance Spectroscopy Scalar Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Prestegard, J. H., Valafar, H, Glushka, J., and Tian, F. (2001) Nuclear magnetic resonance in the era of structural genomics. Biochemistry 40, 8677–8685.PubMedCrossRefGoogle Scholar
  2. 3.
    Wider, G. and Wüthrich, K. (1999) NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr. Opin. Struct. Biol. 9, 594–601.PubMedCrossRefGoogle Scholar
  3. 4.
    Lian, L.Y. and Middleton, D. A. (2001) Labelling approaches for protein structured studies by solution-state and solid-state NMR. Prog. NMR Spectrosc. 39, 171–190.CrossRefGoogle Scholar
  4. 5.
    Rajesh, S., Nietlispach, D., Nakayama, H., et al. (2003) A novel method for the biosynthesis of deuterated proteins with selective protonation at the aromatic rings of Phe, Tyr and Trp. J. Biomol. NMR 27, 81–86.PubMedCrossRefGoogle Scholar
  5. 6.
    Griesinger, C., Schwalbe, H., Schleucher, J., and Sattler, M. (1994) Proton-detected heteronuclear and multidimensional NMR. In: (Croasmun, W. R. and Carlson R. M. K., eds.) Two-Dimensional NMR Spectroscopy, VCH, New York, NY: 457–580.Google Scholar
  6. 7.
    Riek, R., Wider, G., Pervushin, K., and Wüthrich, K. (1999) Polarization transfer by crosscorrelated relaxation in solution NMR with very large molecules. Proc. Natl. Acad. Sci. USA 96, 4918–4923.PubMedCrossRefGoogle Scholar
  7. 8.
    Pervushin, K., Riek, R., Wider, G., and Wüthrich, (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12,366–12,371.PubMedCrossRefGoogle Scholar
  8. 9.
    Clore, G. M. and Gronenborn, A. M. (1994) Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. Protein Sci. 3, 372–390.PubMedCrossRefGoogle Scholar
  9. 10.
    Szyperski, T., Wider, G., Bushweller, J. H., and Wüthrich, K. (1993) Reduced dimensionality in triple-resonance NMR experiments. J. Am. Chem. Soc. 115, 9307–9308.CrossRefGoogle Scholar
  10. 11.
    Kozminski, W. and Zhukov I. (2003) Multiple quadrature detection in reduced dimensionality experiments. J. Biomol. NMR 26, 157–166.PubMedCrossRefGoogle Scholar
  11. 12.
    Bersch, Rossy, E., Covés, J., and Brutscher, B. (2003) Optimized set of two-dimen-sional experiments for fast sequential assignment, secondary structure determination, and backbone fold validation of 13C/15N-labelled proteins. J. Biomol. NMR 27, 57–67.CrossRefGoogle Scholar
  12. 13.
    Moseley, H. N. B. and Montelione, G. T. (1999) Automated analysis of NMR assignments and structures for proteins. Curr. Opin. Struct. Biol. 9, 635–642.PubMedCrossRefGoogle Scholar
  13. 14.
    Moseley, H. N. Monleon, D., and Montelione, G. T. (2001) Automated determination of protein backbone resonance assignments from triple resonance nuclear magnetic reso-nance data. In: (James, T. L., Dötsch, V., and Smitz, U., eds.) Methods in Enzymology, vol. 339 Academic, San Diego, CA: 91–108.Google Scholar
  14. 15.
    Mumenthaler, C., Güntert, P., Braun, W., and Wüthrich, K. (1997) Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. J. Biomol. NMR 10, 351–362.PubMedCrossRefGoogle Scholar
  15. 16.
    Linge, J. P., O’Donoghue, S. I., and Nilges, M. (2001) Automated assignment of ambiguous nuclear Overhauser effects with ARIA. In: (James, T. L., Dötsch, V., and Smitz, U., eds.) Methods in Enzymology, vol. 339 Academic, San Diego, CA: 71–90.Google Scholar
  16. 17.
    Herrmann, T., Güntert, P., and Wx00FC;thrich, (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227.PubMedCrossRefGoogle Scholar
  17. 18.
    Wüthrich, (1986) NMR of Proteins and Nucleic Acids. Wiley, New York.Google Scholar
  18. 19.
    Cavanagh, J., Fairbrother, W. J., Palmer III, A. G., and Skelton, N. J. (1996) Protein NMR Spectroscopy. Academic Press, New York.Google Scholar
  19. 20.
    Wishart, D. S., Sykes, B. D., and Richards, F. M. (1992) The Chemical Shift Index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy.Biochemistry 31, 1647–1651.PubMedCrossRefGoogle Scholar
  20. 21.
    Cornilescu, G., Delaglio, F, and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302.PubMedCrossRefGoogle Scholar
  21. 22.
    Dyson H. J. and Wright P. E. (1994) Protein structure calculation using NMR restraints. In: (Croasmun, W. R. and Carlson, R. M. K., eds.) Two-Dimensional NMR Spectroscopy, VCH, New York NY: 655–698.Google Scholar
  22. 23.
    Grzesiek, S., Cordier, F., and Dingley, A. J. (2001) Scalar couplings across hydrogen bonds. In: (James, T. L., Dötsch, V., and Smitz, U., eds.) Methods in Enzymology, vol. 338 Academic, San Diego, CA: 111–133.Google Scholar
  23. 24.
    Kozminski, W. (1999) A purephase homonuclear J-modulated HMQC experiment with tilted cross-peak patterns for an accurate determination of homonuclear coupling constants. J. Magn. Reson. 141, 185–190.PubMedCrossRefGoogle Scholar
  24. 25.
    Bax, A. (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci. 12, 1–16.PubMedCrossRefGoogle Scholar
  25. 26.
    Prestegard, J. H., Tolman, J. R., Al-Hashimi, H. M., and Andrec, M. (1999) Protein structure and dynamics from field-induced residual dipolar couplings. In: (Rama Krishna, N. and Berliner, L. J., eds.) Biological Magnetic Resonance, vol. 17 Kluver/Plenum, New York, NY: 311–355.Google Scholar
  26. 27.
    Bax, A., Kontaxis, G., and Tjandra N. (2001) Dipolar couplings in macromolecular structure determination. In: (James, T. L., Dötsch, V., and Smitz, U., eds.) Methods in Enzymol-ogy, vol. 339 Academic, San Diego, CA: 127–174.Google Scholar
  27. 28.
    Brunner E. (2001) Residual dipolar couplings in protein NMR. Concepts Magn. Reson. 13, 238–259.CrossRefGoogle Scholar
  28. 29.
    de Alba, E. and Tjandra N. (2002) NMR dipolar coupling for the structure determination of biopolymers in solution. Prog. NMR Spectrosc. 40, 175–197.CrossRefGoogle Scholar
  29. 30.
    Chou, J. J., Li, S., Klee, and Bax, A. (2001) Solution structure of Ca2+-calmodulin reveals flexible hand-like properties of its domains. Nature Struct. Biol. 8, 990–997.PubMedCrossRefGoogle Scholar
  30. 31.
    Schwalbe, H., Carlomagno, T., Hennig, M., et al. (2001) Cross-correlated relaxation for measurement of angles between tensorial interactions. In: (James, T. L., Dötsch, V.,and Smitz, U., eds.) Methods in Enzymology, vol. 338 Academic, San Diego, CA: 35–81.Google Scholar
  31. 32.
    Clore, G. M. and Gronenborn, A. M. (1998) Determinig structures of large proteins and protein complexes by NMR. In: (Krishna, N. R. and Berliner, L. J., eds.) Biological Mag-netic Resonance, vol. 16 Kluwer Academic/Plenum New York, NY: 3–26.Google Scholar
  32. 33.
    van Gunsteren, W. F., Bonvin, A. M. J. J., Daura, X., and Smith, L. J. (1999) Aspects of modelling biomolecular structure on the basis of spectroscopic or diffraction data. In: (Krishna, N. R. and Berliner, L. J., eds.) Biological Magnetic Resonance, vol. 17 Kluwer Academic/Plenum, New York, NY: 3–35.Google Scholar
  33. 34.
    O’Donoghue, S. I. and Nilges, M. (1999) Calculation of symmetric oligomer structures from NMR data. In: (Krishna, N. R. and Berliner, L. J., eds.) Biological Magnetic Reso-nance, vol. 17 Kluwer Academic/Plenum, New York, NY: 131–161.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Andrzej Ejchart
    • 1
  • Igor Zhukov
    • 2
  1. 1.Institute of Biochemistry and BiophysicsPoland
  2. 2.Institute of Biochemistry and BiophysicsWarsawPoland

Personalised recommendations