Advertisement

Production of Protein Microarrays Using Robotic Pin Printing Technologies

  • Ye Fang
  • Ann M. Ferrie
  • Fang Lai
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The increased numbers of potential drug targets uncovered through genomics-based approaches have created a demand for screening technologies that enable robust and parallel analysis of many targets, given that it is costly to sort out the targets one by one. Array-based expression analysis (bd1) and mutation mapping 2 of many genes have made a major impact on biology and on drug discovery and development. Whereas genes contain the information of life, their encoded proteins perform nearly all the functions in the cell. Because of this, and the fact that proteins are the targets against which most drugs are designed, it therefore becomes obvious that nothing is more important than deciphering the functions of proteins. Together with genomics, advanced chemical technologies, and high-throughput screening, protein microarray technology has the potential to aid in understanding biological systems or system biology, as well as in developing tomorrow's new medicines

Keywords

Capture Antibody Protein Microarrays PerkinElmer Life Competitive Binding Assay Ultrasonic Water Bath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.PubMedCrossRefGoogle Scholar
  2. 2.
    Favis, R., Day, J. P., Gerry, N. P., Phelan, C., Narod, S., and Barany, F. (2002) Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2. Nat. Biotechnol. 18, 561–564.Google Scholar
  3. 3.
    Lee, K. H.(2001) Proteomics: a technology-driven and technology-limited discovery science. Trends Biotechnol. 19, 217–222.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhu, H. and Synder, M. (2001) Protein arrays and microarrays. Nat. Biotechnol. 5,40–45.Google Scholar
  5. 5.
    Mitchell, P. (2002) A perspective on protein microarrays. Nat. Biotechnol. 20, 225–229.PubMedCrossRefGoogle Scholar
  6. 6.
    MacBeath, G. and Schreber, S. L. (2000) Printing proteins as microarrays for high-through-put function determination. Science 289, 1760–1763.PubMedGoogle Scholar
  7. 7.
    Schweitzer, B., Wiltshire, S., Lambert, J., et al. (2000) Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc. Natl. Acad. Sci. USA 97, 10,113–10,119.PubMedCrossRefGoogle Scholar
  8. 8.
    Wiltshire, S., O’Malley, S., Lambert, J., et al. (2000) Detection of multiple allergen-specific IgEs on microarrays by immunoassay with rolling circle amplification. Clin. Chem. 46,1990–1993.PubMedGoogle Scholar
  9. 9.
    MacBeath, G., Koehler, A. N., and Schreiber, S. L. (1999) Printing small molecules as microarrays and detecting protein-ligand interactions en masse. J. Am. Chem. Soc. 121, 7967–7968.CrossRefGoogle Scholar
  10. 10.
    Houseman, B. T. and Mrksich, M. (2002) Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9, 443–454.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, D., Liu, S., Trummer, B. J., Deng, C., and Wang, A. (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–281.PubMedCrossRefGoogle Scholar
  12. 12.
    Fang, Y., Frutos, A. G., and Lahiri, J. (2003) Ganglioside microarrays for toxin detection. Langmiur 19, 1500–1505.CrossRefGoogle Scholar
  13. 13.
    Zhu, H., Bilgin, M., Bangham, R., et al. (2001) Global analysis of protein activities using protein chips. Science 293, 2101–2105.PubMedCrossRefGoogle Scholar
  14. 14.
    Houseman, B. T., Huh, J. H., Kron, S. J., and Mrksich, M. (2002) Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270–274.PubMedCrossRefGoogle Scholar
  15. 15.
    Fang, Y., Frutos, A. G., and Lahiri, J. (2002) Membrane protein microarrays. J. Am. Chem. Soc. 124,2394–2395.PubMedCrossRefGoogle Scholar
  16. 16.
    Haga, T. and Berstein, G. (eds) (1999) G Protein-Coupled Receptors. CRC Press, Boca Raton, FL.Google Scholar
  17. 17.
    Rubina, Y. A., Dementieva, E. I., Stomakhin, A. A., et al. (2003) Hydrogel-based protein microchips: manufacturing, properties, and applications. BioTechniques 34, 1008–1012.PubMedGoogle Scholar
  18. 18.
    Rowe, C. A., Tender, L. M., Feldstein, M. J., et al. (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal. Chem. 71, 3846–3852.PubMedCrossRefGoogle Scholar
  19. 19.
    Vijayendran, R. A. and Leckband, D. E. (2001) A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 73, 471–480.PubMedCrossRefGoogle Scholar
  20. 20.
    Fang, Y., Frutos, A. G., and Lahiri, J. (2002) G protein-coupled receptor microarrays. ChemBioChem 3, 987–991.PubMedCrossRefGoogle Scholar
  21. 21.
    Fang, Y., Lahiri, J., and Picard, L. (2003) G protein-coupled receptor microarrays for drug discovery. Drug Discovery Today 8, 755–761.PubMedCrossRefGoogle Scholar
  22. 22.
    Okamoto, T., Suzuki, T., and Yamamoto, N. (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat. Biotechnol. 18, 438–441.PubMedCrossRefGoogle Scholar
  23. 23.
    Kodadek, T. (2001) Protein microarrays: prospects and problems. Chem. Biol. 8,105–115.PubMedCrossRefGoogle Scholar
  24. 24.
    Heithier, H., Hallmann, D., Boege, F., et al. (1994) Synthesis and properties of fluorescent beta-adrenoceptor ligands. Biochemistry 33, 9126–9134.PubMedCrossRefGoogle Scholar
  25. 25.
    Barroso, S., Francoise, R., Nicolas-Etheve, D., et al. (2000) Identification of residues in-volved in neurotensin binding and modeling of the agonist binding site in neurotensin receptor 1. J. Biol. Chem. 275, 328–336.PubMedCrossRefGoogle Scholar
  26. 26.
    Bilski, A., Dorries, S., Fitzgerald, J. D., Jessup, R., Tucker, H., and Wale, J. (1980) ICI 118551, a potent β2 adrenoreceptor antagonist. Br. J. Pharmacol. 69, 292–305.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Ye Fang
    • 1
  • Ann M. Ferrie
    • 1
  • Fang Lai
    • 1
  1. 1.Biochemical Technologies, Science and Technology DivisionCorning IncorporatedCorningNY

Personalised recommendations