Advertisement

The Yeast Two-Hybrid System for Detecting Interacting Proteins

  • Ilya G. Serebriiskii
  • Erica A. Golemis
  • Peter Uetz
Protocol
  • 2.2k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Protein-protein interactions play an essential role in all living systems, and hence their analysis is of foremost importance in molecular biology. Although there are num-ber of methods to detect protein-protein interactions, the yeast two-hybrid system is probably the most successful method. Recently established protein interaction data- bases draw their data to a large extent from the summed input of small and large-scale two-hybrid screens.

Keywords

Library Plasmid Library Screen Bait Protein Bait Plasmid Master Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Johnsson, N. and Varshavsky, A. (1994) Ubiquitin-assisted dissection of protein transport across membranes. EMBO J. 13, 2686–2698.PubMedGoogle Scholar
  2. 2.
    Drees, B. L. (1999) Progress and variations in two-hybrid and three-hybrid technologies. Curr. Opin. Chem. Biol. 3, 64–70.PubMedCrossRefGoogle Scholar
  3. 3.
    Frederickson, R. M. (1998) Macromolecular matchmaking: advances in two-hybrid and related technologies. Curr. Opin. Biotechnol. 9, 90–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Golemis, E. A. and Khazak, V. (1997) Alternative yeast two-hybrid systems. The interac-tion trap and interaction mating. Methods Mol. Biol. 63, 197–218.PubMedGoogle Scholar
  5. 5.
    Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interac-tions. Nature 340, 245–246.PubMedCrossRefGoogle Scholar
  6. 6.
    Schwartz, H., Alvares, C. P., White, M. B., and Fields, S. (1998) Mutation detection by a two-hybrid assay. Hum. Mol. Genet. 7, 1029–1032.PubMedCrossRefGoogle Scholar
  7. 7.
    Vidal, M. and Legrain, P. (1999) Yeast forward and reverse’ n’-hybrid systems.Nucleic Acids Res. 27, 919–929.PubMedCrossRefGoogle Scholar
  8. 8.
    Vidal, M. and Endoh, H. (1999) Prospects for drug screening using the reverse two-hybrid system. Trends Biotechnol. 17, 374–381.PubMedCrossRefGoogle Scholar
  9. 9.
    SenGupta, D. J., Zhang, B., Kraemer, B., Pochart, P., Fields, S., and Wickens, M. (1996) A three-hybrid system to detect RNA-protein interactions in vivo. Proc. Natl. Acad. Sci. USA 94,8496–8501.CrossRefGoogle Scholar
  10. 10.
    Estojak, J., Brent, R., and Golemis, E. A. (1995) Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell Biol. 15, 5820–5829.PubMedGoogle Scholar
  11. 11.
    Rain, J. C., Selig, L., De Reuse, H., et al. (2001) The protein-protein interaction map of Helicobacter pylori. Nature 409, 211–215.PubMedCrossRefGoogle Scholar
  12. 12.
    Raquet, X., Eckert, J. H., Muller, S., and Johnsson, N. (2001) Detection of altered protein conformations in living cells. J. Mol. Biol. 305, 927–938.PubMedCrossRefGoogle Scholar
  13. 13.
    Cagney, G., Uetz, P., and Fields, S. (2001) Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome. Physiol. Genomics 7, 27–34.PubMedGoogle Scholar
  14. 14.
    Giot, L., Bader, J. S., Brouwer, C., et al. (2003) A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736.PubMedCrossRefGoogle Scholar
  15. 15.
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) A compre-hensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574.PubMedCrossRefGoogle Scholar
  16. 16.
    Uetz, P., Giot, L., Cagney, G., et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.PubMedCrossRefGoogle Scholar
  17. 17.
    Stagljar, I. and Fields, S. (2002) Analysis of membrane protein interactions using yeast-based technologies. Trends Biochem. Sci. 27, 559–563.PubMedCrossRefGoogle Scholar
  18. 18.
    Serebriiskii, I. G., Mitina, O., Pugacheva, E. N., et al. (2002) Detection of peptides, pro-teins, and drugs that selectively interact with protein targets. Genome Res. 12, 1785–1791.PubMedCrossRefGoogle Scholar
  19. 19.
    Serebriiskii, I., Toby, G., Finley, R. L., and Golemis, E. A. (2001) Genomic analysis utiliz-ing the yeast two-hybrid system. In: (Starkey, M., ed.) Chimeric Genes and Proteins, Humana, Totowa, NJ: 415–454.Google Scholar
  20. 20.
    Duttweiler, H. M. (1996) A highly sensitive and non-lethal beta-galactosidase plate assay for yeast. Trends Genet. 12, 340–341.PubMedCrossRefGoogle Scholar
  21. 21.
    Finley, R. and Brent, R. (1994) Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators. Proc. Nat. Acad. Sci. USA 91, 12,980–12,984.PubMedCrossRefGoogle Scholar
  22. 22.
    Petermann, R., Mossier, B. M., Aryee, D. N., and Kovar, H. (1998) A recombination based method to rapidly assess specificity of two-hybrid clones in yeast. Nucleic Acids Res. 26, 2252–2253.PubMedCrossRefGoogle Scholar
  23. 23.
    Fromont-Racine, M., Mayes, A. E., Brunet-Simon, A., et al. (2000) Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17,95–110.PubMedCrossRefGoogle Scholar
  24. 24.
    Cagney, G., Uetz, P., and Fields, S. (2000) High-throughput screening for protein-protein interactions using two-hybrid assay. Methods Enzymol. 328, 3–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Uetz, P., Ideker, T., and Schwikowski, B. (2002) Visualization and integration of protein-protein interactions. In: (Golemis, E., ed.) Protein-Protein Interactions-A Molecular Cloning Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY: 682.Google Scholar
  26. 26.
    Goh, K. I., Oh, E., Jeong, H., Kahng, B., and Kim, D. (2002) Classification of scale-free networks. Proc. Natl. Acad. Sci. USA 99, 12,583–12,588.PubMedCrossRefGoogle Scholar
  27. 27.
    Jeong, H., Mason, S. P., Barabasi, A. L., and Oltvai, Z. N. (2001) Lethality and centrality in protein networks. Nature 411, 41–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Schwikowski, B., Uetz, P., and Fields, S. (2000) A network of protein-protein interactions in yeast. Nat. Biotechnol. 18, 1257–1261.PubMedCrossRefGoogle Scholar
  29. 29.
    Bader, G. D. and Hogue, C. W. (2003) An automated method for finding molecular com-plexes in large protein interaction networks. BMC Bioinformatics 4, 2.PubMedCrossRefGoogle Scholar
  30. 30.
    Sprinzak, E. and Margalit, H. (2001) Correlated sequence-signatures as markers of pro-tein-protein interaction. J. Mol. Biol., 311, 681–692.PubMedCrossRefGoogle Scholar
  31. 31.
    Kelley, B. P., Sharan, R., Karp, R. M., et al. (2003) Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. USA 100,11,394–11,399.PubMedCrossRefGoogle Scholar
  32. 32.
    DeMarini, D. J., Creasy, C. L., Lu, Q., et al. (2001) Oligonucleotide-mediated, PCR-inde-pendent cloning by homologous recombination. Bio techniques 30, 520–523.Google Scholar
  33. 33.
    Oldenburg, K. R., Vo, K. T., Michaelis, S., and Paddon, C. (1997) Recombination-medi-ated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25, 451–452.PubMedCrossRefGoogle Scholar
  34. 34.
    James, P., Halladay, J., and Craig, E. A. (1996) Genomic libraries and a host strain de-signed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Ilya G. Serebriiskii
    • 1
  • Erica A. Golemis
    • 2
  • Peter Uetz
    • 2
  1. 1.Division of Basic ScienceFox Chase Cancer CenterPhiladelphia
  2. 2.Institut fur GenetikForschungszentrum KarlsruheGermany

Personalised recommendations