Advertisement

The In Situ Characterization of Membrane-Immobilized 2-D PAGE-Separated Proteins Using Ink-Jet Technology

  • Patrick W. Cooley
  • Janice L. Joss
  • Femia G. Hopwood
  • Nichole L. Wilson
  • Andrew A. Gooley
Protocol
  • 2.1k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

A progression in technology development for proteomics research is occurring at an ever-increasing rate (1). The monitoring of the physiological changes of healthy and diseased tissues with linkage to the expression of the proteome is fast becoming a method to identify molecular disease targets for creating novel drugs, as well as providing data for basic research. Improvements in the preparation of protein samples and mass spectrometry (MS) equipment are leading to better identification and characterization of proteins (2,3). Advances in protocols for protein sample prefractionation, solubilization strategies, and two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) are oriented with the development of automated high-throughput proteomic analysis platforms (4, 5, 6).

References

  1. 1.
    Lee, K. H. (2001) Proteomics: a technology-driven and technology-limited discovery science. Trends Biotechnol. 19, 217–222.PubMedCrossRefGoogle Scholar
  2. 2.
    Hamdan, M. and Righetti, P. G. (2002) Modern strategies for protein quantification in proteome analysis: Advantages and limitations. Mass Spectrom. Rev. 21, 287–302.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith, R. D. (2002) Trends in mass spectrometry instrumentation for proteomics. Trends Biotechnol. 20, S3–S7.PubMedCrossRefGoogle Scholar
  4. 4.
    Righetti, P. G., Castagna, A., and Herbert, B. (2001) Prefractionation techniques in proteome analysis. Anal. Chem. 73, 320A–326A.PubMedCrossRefGoogle Scholar
  5. 5.
    Govorun, V. M., and Archakov, A. I. (2002) Proteomic technologies in modern biomedical science. Biochemistry 67, 1109–1123.PubMedGoogle Scholar
  6. 6.
    Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y., and Aebersold, R. (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. USA 97, 9390–9395.PubMedCrossRefGoogle Scholar
  7. 7.
    Wilson, D. S. and Nock, S. (2003) Recent developments in protein microarray technology. Angew. Chem. Int. Ed. Engl. 42, 494–500.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee, Y. S. and Mrksich, M. (2002) Protein chips: from concept to practice. Trends Biotechnol. 20, S14–18.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhu, H. and Snyder, M. (2003) Protein chip technology. Curr. Opin. Chem. Biol. 7, 55–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Sanders, G. H. and Manz, A. (2000) Chip-based Microsystems for genomic and proteomic analysis. Trends Anal. Chem. 19, 364–378.CrossRefGoogle Scholar
  11. 11.
    Figeys, D. and Pinto, D. (2001) Proteomics on a chip: promising developments. Electrophoresis 22, 208–216.PubMedCrossRefGoogle Scholar
  12. 12.
    Candiano, G., Musante, L., Bruschi, M., et al. (2002) Two-dimensional maps in soft immobilized pH gradient gels: a new approach to the proteome of the Third Millennium. Electrophoresis 23, 292–297.PubMedCrossRefGoogle Scholar
  13. 13.
    Gorg, A., Boguth, G., Kopf, A., Reil, G., Parlar, H., and Weiss, W. (2002) Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels. Proteomics 2, 1652–1657.PubMedCrossRefGoogle Scholar
  14. 14.
    Westbrook, J. A., Yan, J. X., Wait, R., Welson, S. Y., and Dunn, M. J. (2001) Zooming-in on the proteome: very narrow-range immobilized pH gradients reveal more protein species and isoforms. Electrophoresis 22, 2865–2871.PubMedCrossRefGoogle Scholar
  15. 15.
    Pedersen, S. K., Harry, J. L., Sebastian, L., et al. (2003) Unseen proteome: mining below the tip of the iceberg to find low abundance and membrane proteins. J. Proteome Res. 2, 303–311.PubMedCrossRefGoogle Scholar
  16. 16.
    Sloane, A. J., Duff, J. L., Wilson, N. L., et al. (2002) High throughput peptide mass fingerprinting and protein macroarray analysis using chemical printing strategies. Mol. Cell. Proteomics 1, 490–499.PubMedCrossRefGoogle Scholar
  17. 17.
    Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 90, 5011–5015.PubMedCrossRefGoogle Scholar
  18. 18.
    Wilson, N. L., Schulz, B. L., Karlsson, N. G., and Packer, N. H. (2002) Sequential analysis of N-and O-linked glycosylation of 2-D PAGE separated glycoproteins. J. Proteome Res. 1, 521–529.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Patrick W. Cooley
    • 1
  • Janice L. Joss
    • 2
  • Femia G. Hopwood
    • 3
  • Nichole L. Wilson
    • 2
  • Andrew A. Gooley
    • 2
  1. 1.MicroFab Technologies Inc.Plano
  2. 2.Proteome Systems Ltd.SydneyAustralia
  3. 3.Proteome Systems Ltd.Australia

Personalised recommendations