Chemical Cleavage of Mismatch

Theory and Clinical Applications
  • Neil V. Whittock
  • Louise Izatt
Part of the Springer Protocols Handbooks book series (SPH)


Direct nucleotide sequencing is the reference standard critical to all molecular biology whether it is used for the elucidation of an entire genome or the characterization of a specific mutation. Sequencing protocols were initially developed using either dideoxy nucleotides (1) or chemicals (2), although the latter became less attractive because of the toxic nature of the chemicals used. It is obvious that if sequencing was less expensive, then there would be no need for mutation-scanning techniques. However, although fluorescent technology is improving and capillary electrophoresis is replacing polyacrylamide gel electrophoresis, the cost of consumables is rising and laboratories are, therefore, forced to use other techniques to detect mutations. Mutation-scanning techniques need to detect new mutations within the entire coding region of a gene and there are several methods available to scan for sequence changes in either cellular RNA or genomic DNA. These include denaturing gradient gel electrophoresis (DGGE) (3) (see Chapter 8), chemical cleavage of mismatch (CCM) (4), enzyme mismatch cleavage (EMC) (5,6), single-stranded conformation polymorphism (SSCP) (see Chapter 7) (CR7), heteroduplex analysis (HA) (8), conformation-sensitive gel electrophoresis (CSGE) (9), the protein truncation test (PTT) (10); and, more recently, denaturing high-performance liquid chromatography (DHPLC) (11,CR12) (see Chapter24). The most critical factor that determines the success of any gene screening protocol is the sensitivity of the detection technique. The sensitivities of these methods vary greatly depending on the size of DNA/RNA template screened. For example, SSCP has a sensitivity of >95‰ for fragments of 155 bp, but this is reduced to only 3‰ for 600 bp (13). Once optimised, DGGE has a sensitivity of approx 99‰ for fragments of up to 500 bp (14), and CSGE has a sensitivity of 90–100‰ for fragments of up to 450 bp (15). CCM and EMC, on the other hand, have sensitivities of 95–100‰ for fragments >1.5 kb in size ( 16,17) and are ideal for screening compact genes where more than one exon can be amplified together using genomic DNA as the template. All of these techniques detect sequence changes such as nonsense, frame shift, splice site, and missense mutations, as well as polymorphisms, however, the PTT screens only for truncating mutations and is predicted to have a sensitivity of >95‰ and can be used for RNA or DNA fragments in excess of 3 kb.


Fabry Disease Nest Polymerase Chain Reaction Epidermolysis Bullosa Ataxia Telangiectasia Ataxia Telangiectasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sanger, F., Nicklen, S., and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.PubMedCrossRefGoogle Scholar
  2. 2.
    Maxam, A. M. and Gilbert, W. (1977) A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560–564.PubMedCrossRefGoogle Scholar
  3. 3.
    Myers, R. M., Maniatis, T., and Lerman, L. S. (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155, 501–527.PubMedCrossRefGoogle Scholar
  4. 4.
    Cotton, R. G., Rodrigues, N. R., and Campbell, R. D. (1988) Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc. Natl. Acad. Sci. USA 85, 4397–4401.PubMedCrossRefGoogle Scholar
  5. 5.
    Mashal, R. D., Koontz, J., and Sklar, J. (1995) Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nature Genet. 9, 177–183.PubMedCrossRefGoogle Scholar
  6. 6.
    Youil, R., Kemper, B. W., and Cotton, R. G. (1995) Screening for mutations by enzyme mismatch cleavage with T4 endonuclease VII. Proc. Natl. Acad. Sci. USA 92, 87–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770.PubMedCrossRefGoogle Scholar
  8. 8.
    White, M. B., Carvalho, M., Derse, D., O’Brien, S. J., and Dean, M. (1992) Detecting single base substitutions as heteroduplex polymorphisms. Genomics 12, 301–306.PubMedCrossRefGoogle Scholar
  9. 9.
    Ganguly, A., Rock, M. J., and Prockop, D. J. (1993) Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes. Proc. Natl. Acad. Sci. USA 90, 10,325–10,329.PubMedCrossRefGoogle Scholar
  10. 10.
    Roest, P. A., Roberts, R. G., Sugino, S., van Ommen, G. J., and den Dunnen, J. T. (1993) Protein truncation test (PTT) for rapid detection of translation-terminating mutations. Hum. Mol. Genet. 2, 1719–1721.PubMedCrossRefGoogle Scholar
  11. 11.
    Oefner, P. J. and Underhill, P. A. (1998) DNA mutation detection using denaturing high-performance liquid chromatography (DHPLC). Curr. Protocols Hum. Genet. 19(Suppl), 7101–7102.Google Scholar
  12. 12.
    Oefner, P. J. and Underhill, P. A. (1995) Comparative DNA sequence by denaturing high performance liquid chromatography (DHPLC). Am. J. Hum. Genet. 57, A266.Google Scholar
  13. 13.
    Sheffield, V. C., Beck, J. S., Kwitek, A. E., Sandstrom, D. W., and Stone, E. M. (1993) The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 16, 325–332.PubMedCrossRefGoogle Scholar
  14. 14.
    Fodde, R. and Losekoot, M. (1994) Mutation detection by denaturing gradient gel electrophoresis (DGGE). Hum. Mutat. 3, 83–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Korkko, J., Annunen, S., Pihlajamaa, T., Prockop, D. J., and Ala-Kokko, L. (1998) Conformation sensitive gel electrophoresis for simple and accurate detection of mutations: comparison with denaturing gradient gel electrophoresis and nucleotide sequencing. Proc. Natl. Acad. Sci. USA 95, 1681–1685.PubMedCrossRefGoogle Scholar
  16. 16.
    Rowley, G., Saad, S., Giannelli, F., and Green, P. M. (1995) Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage. Genomics 30, 574–582.PubMedCrossRefGoogle Scholar
  17. 17.
    Babon, J. J., McKenzie, M., and Cotton, R. G. (2003) The use of resolvases T4 endonuclease VII and T7 endonuclease I in mutation detection. Mol. Biotechnol. 23, 73–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Novack, D. F., Casna, N. J., Fischer, S. G., and Ford, J. P. (1986) Detection of single base-pair mismatches in DNA by chemical modification followed by electrophoresis in 15‰ polyacrylamide gel. Proc. Natl. Acad. Sci. USA 83, 586–590.PubMedCrossRefGoogle Scholar
  19. 19.
    Gogos, J. A., Karayiorgou, M., Aburatani, H., and Kafatos, F. C. (1990) Detection of single base mismatches of thymine and cytosine residues by potassium permanganate and hydroxylamine in the presence of tetralkylammonium salts. Nucleic Acids Res. 18, 6807–6814.PubMedCrossRefGoogle Scholar
  20. 20.
    Roberts, E., Deeble, V. J., Woods, C. G., and Taylor, G. R. (1997) Potassium permanganate and tetraethylammonium chloride are a safe and effective substitute for osmium tetroxide in solid-phase fluorescent chemical cleavage of mismatch. Nucleic Acids Res. 25, 3377–3378.PubMedCrossRefGoogle Scholar
  21. 21.
    Montandon, A. J., Green, P. M., Giannelli, F., and Bentley, D. R. (1989) Direct detection of point mutations by mismatch analysis: application to haemophilia B. Nucleic Acids Res. 17, 3347–3358.PubMedCrossRefGoogle Scholar
  22. 22.
    Dahl, H. H., Lamande, S. R., Cotton, R. G., and Bateman, J. F. (1989) Detection and localization of base changes in RNA using a chemical cleavage method. Anal. Biochem. 183, 263–268.PubMedCrossRefGoogle Scholar
  23. 23.
    Verpy, E., Biasotto, M., Meo, T., and Tosi, M. (1994) Efficient detection of point mutations on color-coded strands of target DNA. Proc. Natl. Acad. Sci. USA 91, 1873–1877.PubMedCrossRefGoogle Scholar
  24. 24.
    Grompe, M., Muzny, D. M., and Caskey, C. T. (1989) Scanning detection of mutations in human ornithine transcarbamoylase by chemical mismatch cleavage. Proc. Natl. Acad. Sci. USA 86, 5888–5892.PubMedCrossRefGoogle Scholar
  25. 25.
    Forrest, S. M., Dahl, H. H., Howells, D. W., Dianzani, I., and Cotton, R. G. (1991) Mutation detection in phenylketonuria by using chemical cleavage of mismatch: importance of using probes from both normal and patient samples. Am. J. Hum. Genet. 49, 175–183.PubMedGoogle Scholar
  26. 26.
    Saleeba, J. A. and Cotton, R. G. (1993) Chemical cleavage of mismatch to detect mutations. Methods Enzymol. 217, 286–295.PubMedCrossRefGoogle Scholar
  27. 27.
    Cotton, R. G. (1993) Current methods of mutation detection. Mutat. Res. 285, 125–144.PubMedGoogle Scholar
  28. 28.
    Smith, M. J., Humphrey, K. E., Cappai, R., Beyreuther, K., Masters, C. L., and Cotton, R. G. (2000) Correct heteroduplex formation for mutation detection analysis. Mol. Diagn. 5, 67–73.PubMedGoogle Scholar
  29. 29.
    Lambrinakos, A., Humphrey, K. E., Babon, J. J., Ellis, T. P., and Cotton, R. G. (1999) Reactivity of potassium permanganate and tetraethylammonium chloride with mismatched bases and a simple mutation detection protocol. Nucleic Acids Res. 27, 1866–1874.PubMedCrossRefGoogle Scholar
  30. 30.
    Deeble, V. J., Roberts, E., Robinson, M. D., Woods, C. G., Bishop, D. T., and Taylor, G. R. (1997) Comparison of enzyme mismatch cleavage and chemical cleavage of mismatch on a defined set of heteroduplexes. Genet Test. 1, 253–259.PubMedCrossRefGoogle Scholar
  31. 31.
    Bui, C. T., Lambrinakos, A., Babon, J. J., and Cotton, R. G. (2003) Chemical cleavage reactions of DNA on solid support: application in mutation detection. BMC Chem. Biol. 3, 1.PubMedCrossRefGoogle Scholar
  32. 32.
    Bui, C. T., Babon, J. J., Lambrinakos, A., and Cotton, R. G. (2003) Detection of mutations in DNA by solid-phase chemical cleavage method. A simplified assay. Methods Mol. Biol. 212, 59–70.PubMedGoogle Scholar
  33. 33.
    Ren, J. (2001) Chemical mismatch cleavage analysis by capillary electrophoresis with laser-induced fluorescence detection. Methods Mol. Biol. 163, 231–239.PubMedGoogle Scholar
  34. 34.
    Little, M. H., Prosser, J., Condie, A., Smith, P. J., Van Heyningen, V., and Hastie, N. D. (1992) Zinc finger point mutations within the WT1 gene in Wilms tumor patients. Proc. Natl. Acad. Sci. USA 89, 4791–4795.PubMedCrossRefGoogle Scholar
  35. 35.
    Gibson, R. A., Morgan, N. V., Goldstein, L. H., et al. (1996) Novel mutations and polymorphisms in the Fanconi anemia group C gene. Hum. Mutat. 8, 140–148.PubMedCrossRefGoogle Scholar
  36. 36.
    Tipping, A. J., Pearson, T., Morgan, N. V., et al. (2001) Molecular and genealogical evidence for a founder effect in Fanconi anemia families of the Afrikaner population of South Africa. Proc. Natl. Acad. Sci. USA 98, 5734–5739.PubMedCrossRefGoogle Scholar
  37. 37.
    Germain, D., Biasotto, M., Tosi, M., Meo, T., Kahn, A., and Poenaru, L. (1996) Fluorescenceassisted mismatch analysis (FAMA) for exhaustive screening of the alpha-galactosidase A gene and detection of carriers in Fabry disease. Hum. Genet. 98, 719–726.PubMedCrossRefGoogle Scholar
  38. 38.
    Schwaab, R., Oldenburg, J., Lalloz, M. R., et al. (1997) Factor VIII gene mutations found by a comparative study of SSCP, DGGE and CMC and their analysis on a molecular model of factor VIII protein. Hum. Genet. 101, 323–332.PubMedCrossRefGoogle Scholar
  39. 39.
    Waseem, N. H., Bagnall, R., Green, P. M., and Giannelli, F. (1999) Start of UK confidential haemophilia A database: analysis of 142 patients by solid phase fluorescent chemical cleavage of mismatch. Haemophilia Centres. Thromb. Haemost. 81, 900–905.PubMedGoogle Scholar
  40. 40.
    Greenman, J., Mohammed, S., Ellis, D., et al. (1998) Identification of missense and truncating mutations in the BRCA1 gene in sporadic and familial breast and ovarian cancer. Genes Chromosomes Cancer. 21, 244–249.PubMedCrossRefGoogle Scholar
  41. 41.
    Tessitore, A., Toniato, E., Gulino, A., et al. (2002) Prenatal diagnosis of a rhodopsin mutation using chemical cleavage of the mismatch. Prenat. Diagn. 22, 380–384.PubMedCrossRefGoogle Scholar
  42. 42.
    Lin, B., Cotton, R. G., Trent, D. W., and Wright, P. J. (1992) Geographical clusters of dengue virus type 2 isolates based on analysis of infected cell RNA by the chemical cleavage at mismatch method. J. Virol. Methods. 40, 205–218.PubMedCrossRefGoogle Scholar
  43. 43.
    Bahrmand, A. R., Marashi, S. M., Bakayeva, T. G., and Bakayev, V. V. (2000) Chemical cleavage of mismatches in heteroduplexes of the rpoB gene for detection of mutations associated with resistance of Mycobacterium tuberculosis to rifampin. Scand. J. Infect. Dis. 32, 395–398.PubMedCrossRefGoogle Scholar
  44. 44.
    Whittock, N. V., Ashton, G. H., Mohammedi, R., Mellerio, J. E., et al. (1999) Comparative mutation detection screening of the type VII collagen gene (COL7A1) using the protein truncation test, fluorescent chemical cleavage of mismatch, and conformation sensitive gel electrophoresis. J. Invest. Dermatol. 113, 673–686.PubMedCrossRefGoogle Scholar
  45. 45.
    Izatt, L., Vessey, C., Hodgson, S. V., and Solomon, E. (1999) Rapid and efficient ATM mutation detection by fluorescent chemical cleavage of mismatch: identification of four novel mutations. Eur. J. Hum. Genet. 7, 310–320.PubMedCrossRefGoogle Scholar
  46. 46.
    Fine, J. D., Eady, R. A., Bauer, E. A., et al. (2000) Revised classification system for inherited epidermolysis bullosa: report of the Second International Consensus Meeting on diagnosis and classification of epidermolysis bullosa. J. Am. Acad. Dermatol. 42, 1051–1066.PubMedCrossRefGoogle Scholar
  47. 47.
    Bart, B. J., Gorlin, R. J., Anderson, V. E., and Lynch, F. W. (1966) Congenital localized absence of skin and associated abnormalities resembling epidermolysis bullosa. A new syndrome. Arch. Dermatol. 93, 296–304.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee, J. Y., Chen, H. C., and Lin, S. J. (1993) Pretibial epidermolysis bullosa: a clinicopathologic study. J. Am. Acad. Dermatol. 29, 974–981.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee, J. Y., Pulkkinen L., Liu, H. S., Chen, Y. F., and Uitto, J. (1997) A glycine-to-arginine substitution in the triple-helical domain of type VII collagen in a family with dominant dystrophic epidermolysis bullosa pruriginosa. J. Invest. Dermatol. 108, 947–949.PubMedCrossRefGoogle Scholar
  50. 50.
    Mellerio, J. E., Ashton, G. H., Mohammedi, R., et al. (1999) Allelic heterogeneity of dominant and recessive COL7A1 mutations underlying epidermolysis bullosa pruriginosa. J. Invest. Dermatol. 112, 984–987.PubMedCrossRefGoogle Scholar
  51. 51.
    McGrath J. A., Schofield O. M., and Eady R. A. (1994) Epidermolysis bullosa pruriginosa: dystrophic epidermolysis bullosa with distinctive clinicopathological features. Br. J. Dermatol. 130, 617–625.PubMedCrossRefGoogle Scholar
  52. 52.
    Cambiaghi, S., Brusasco, A., Restano, L., Cavalli, R., and Tadini G. (1997) Epidermolysis bullosa pruriginosa. Dermatology 195, 65–68.PubMedCrossRefGoogle Scholar
  53. 53.
    Christiano, A. M., Hoffman, G. G., Chung-Honet, L. C., et al. (1994) Structural organization of the human type VII collagen gene (COL7A1), composed of more exons than any previously characterized gene. Genomics 21, 169–179.PubMedCrossRefGoogle Scholar
  54. 54.
    Parente, M. G., Chung, L. C., Ryynanen, J., et al. (1991) Human type VII collagen: cDNA cloning and chromosomal mapping of the gene. Proc. Natl. Acad. Sci. USA 88, 6931–6935.PubMedCrossRefGoogle Scholar
  55. 55.
    Christiano, A. M., Greenspan, D. S., Lee, S., and Uitto, J. (1994) Cloning of the human type VII collagen. Complete primary sequence of the alpha1(VII) chain and identification of intragenic polymorphisms. J. Biol. Chem. 269, 20,256–20,262.PubMedGoogle Scholar
  56. 56.
    Christiano, A. M., Rosenbaum, L. M., Chung-Honet, L. C., et al. (1992) The large non-collagenous domain (NC-1) of type VII collagen is amino-terminal and chimeric. Homology to cartilage matrix protein, the type III domains of fibronectin and the A domains of von Willebrand factor. Hum. Mol. Genet. 1, 475–481.PubMedCrossRefGoogle Scholar
  57. 57.
    Gammon, W. R., Abernethy, M. L., Padilla, K. M., et al. (1992) Noncollagenous (NC1) domain of collagen VII resembles multidomain adhesion proteins involved in tissue-specific organization of extracellular matrix. J. Invest. Dermatol. 99, 691–696.PubMedCrossRefGoogle Scholar
  58. 58.
    Bachinger, H. P., Morris, N. P., Lunstrum, G. P., et al. (1990) The relationship of the biophysical and biochemical characteristics of type VII collagen to the function of anchoring fibrils. J. Biol. Chem. 265, 10,095–10,101.PubMedGoogle Scholar
  59. 59.
    Bruckner-Tuderman, L., Nilssen, O., Zimmermann, D. R., et al. (1995) Immunohistochemical and mutation analyses demonstrate that procollagen VII is processed to collagen VII through removal of the NC-2 domain. J. Cell. Biol. 131, 551–559.PubMedCrossRefGoogle Scholar
  60. 60.
    Lunstrum, G. P., Kuo, H. J., Rosenbaum, L. M., et al. (1987) Anchoring fibrils contain the carboxylterminal globular domain of type VII procollagen, but lack the amino-terminal globular domain. J. Biol. Chem. 262, 13,706–13,712.PubMedGoogle Scholar
  61. 61.
    Burgeson, R. E. (1993) Type VII collagen, anchoring fibrils, and epidermolysis bullosa. J. Invest. Dermatol. 101, 252–255.PubMedCrossRefGoogle Scholar
  62. 62.
    Christiano, A. M., Amano, S., Eichenfield, L. F., Burgeson, R. E., and Uitto, J. (1997) Premature termination codon mutations in the type VII collagen gene in recessive dystrophic epidermolysis bullosa result in nonsense-mediated mRNA decay and absence of functional protein. J. Invest. Dermatol. 109, 390–394.PubMedCrossRefGoogle Scholar
  63. 63.
    Christiano, A. M., McGrath, J. A., and Uitto, J. (1996) Influence of the second COL7A1 mutation in determining the phenotypic severity of recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 106, 766–770.PubMedCrossRefGoogle Scholar
  64. 64.
    Christiano, A. M., Greenspan, D. S., Hoffman, G. G., et al. (1993) A missense mutation in type VII collagen in two affected siblings with recessive dystrophic epidermolysis bullosa. Nature Genet. 4, 62–66.PubMedCrossRefGoogle Scholar
  65. 65.
    Dunnill, M. G., McGrath, J. A., Richards, A. J., et al. (1996) Clinicopathological correlations of compound heterozygous COL7A1 mutations in recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 107, 171–177.PubMedCrossRefGoogle Scholar
  66. 66.
    Gardella, R., Belletti, L., Zoppi, N., Marini, D., Barlati, S., and Colombi, M. (1996) Identification of two splicing mutations in the collagen type VII gene (COL7A1) of a patient affected by the localisata variant of recessive dystrophic epidermolysis bullosa. Am. J. Hum. Genet. 59, 292–300.PubMedGoogle Scholar
  67. 67.
    Winberg, J. O., Hammami-Hauasli, N., Nilssen, O., et al. (1997) Modulation of disease severity of dystrophic epidermolysis bullosa by a splice site mutation in combination with a missense mutation in the COL7A1 gene. Hum. Mol. Genet. 6, 1125–1135.PubMedCrossRefGoogle Scholar
  68. 68.
    Hovnanian, A., Hilal, L., Blanchet-Bardon, C., et al. (1994) Recurrent nonsense mutations within the type VII collagen gene in patients with severe recessive dystrophic epidermolysis bullosa. Am. J. Hum. Genet. 55, 289–296.PubMedGoogle Scholar
  69. 69.
    Hilal, L., Rochat, A., Duquesnoy, P., et al. (1993) A homozygous insertion-deletion in the type VII collagen gene (COL7A1) in Hallopeau-Siemens dystrophic epidermolysis bullosa. Nature Genet. 5, 287–293.PubMedCrossRefGoogle Scholar
  70. 70.
    Christiano, A. M., D’Alessio, M., Paradisi, M., et al. (1996) A common insertion mutation in COL7A1 in two Italian families with recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 106, 679–684.PubMedCrossRefGoogle Scholar
  71. 71.
    Christiano, A. M., LaForgia, S., Paller, A. S., McGuire, J., Shimizu, H., and Uitto, J. (1996) Prenatal diagnosis for recessive dystrophic epidermolysis bullosa in 10 families by mutation and haplotype analysis in the type VII collagen gene (COL7A1). Mol. Med. 2, 59–76.PubMedGoogle Scholar
  72. 72.
    Hammami-Hauasli, N., Kalinke, D. U., Schumann, H., et al. (1997) A combination of a common splice site mutation and a frameshift mutation in the COL7A1 gene: absence of functional collagen VII in keratinocytes and skin. J. Invest. Dermatol. 109, 384–389.PubMedCrossRefGoogle Scholar
  73. 73.
    Mellerio, J. E., Dunnill, M. G., Allison, W., et al. A. (1997) Recurrent mutations in the type VII collagen gene (COL7A1) in patients with recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 109, 246–249.PubMedCrossRefGoogle Scholar
  74. 74.
    Christiano, A. M., Hoffman, G. G., Zhang, X., et al. (1997) Strategy for identification of sequence variants in COL7A1 and a novel 2-bp deletion mutation in recessive dystrophic epidermolysis bullosa. Hum. Mutat. 10, 408–414.PubMedCrossRefGoogle Scholar
  75. 75.
    Swift, M., Morrell, D., Cromartie, E., Chamberlin, A. R., Skolnick, M. H., and Bishop, D. T. (1986) The incidence and gene frequency of ataxia-telangiectasia in the United States. Am. J. Hum. Genet. 39, 573–583.PubMedGoogle Scholar
  76. 76.
    Woods, C. G., Bundey, S. E., and Taylor, A. M. (1990) Unusual features in the inheritance of ataxia telangiectasia. Hum. Genet. 84, 555–562.PubMedCrossRefGoogle Scholar
  77. 77.
    Lavin, M. F. and Shiloh, Y. (1997) The genetic defect in ataxia-telangiectasia. Annu. Rev. Immunol. 15, 177–202.PubMedCrossRefGoogle Scholar
  78. 78.
    Gatti, R. A., Berkel, I., Boder, E., et al. (1988) Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature 336, 577–580.PubMedCrossRefGoogle Scholar
  79. 79.
    Uziel, T., Savitsky, K., Platzer, M., et al. (1996) Genomic organization of the ATM gene. Genomics 33, 317–320.PubMedCrossRefGoogle Scholar
  80. 80.
    Platzer, M., Rotman, G., Bauer, D., et al. (1997) Ataxia-telangiectasia locus: sequence analysis of 184 kb of human genomic DNA containing the entire ATM gene. Genome Res. 7, 592–605.PubMedGoogle Scholar
  81. 81.
    Savitsky, K., Sfez, S., Tagle, D. A., et al. (1995) The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum. Mol. Genet. 4, 2025–2032.PubMedCrossRefGoogle Scholar
  82. 82.
    Lakin, N. D., Weber, P., Stankovic, T., Rottinghaus, S. T., Taylor, A. M., and Jackson, S. P. (1996) Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene 13, 2707–2716.PubMedGoogle Scholar
  83. 83.
    Concannon, P. and Gatti, R. A. (1997) Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum. Mutat. 10, 100–107.PubMedCrossRefGoogle Scholar
  84. 84.
    Telatar, M., Wang, Z., Udar, N., et al. (1996) Ataxia-telangiectasia: mutations in ATM cDNA detected by protein-truncation screening. Am. J. Hum. Genet. 59, 40–44.PubMedGoogle Scholar
  85. 85.
    Wright, J., Teraoka, S., Onengut, S., et al. (1996) A high frequency of distinct ATM gene mutations in ataxia-telangiectasia. Am. J. Hum. Genet. 59, 839–846.PubMedGoogle Scholar
  86. 86.
    Toyoshima, M., Hara, T., Zhang, H., et al. (1998) Ataxia-telangiectasia without immunodeficiency: novel point mutations within and adjacent to the phosphatidylinositol 3-kinase-like domain. Am. J. Med. Genet. 75, 141–144.PubMedCrossRefGoogle Scholar
  87. 87.
    Gilad, S., Khosravi, R., Harnik, R., et al. (1998) Identification of ATM mutations using extended RT-PCR and restriction endonuclease fingerprinting, and elucidation of the repertoire of A-T mutations in Israel. Hum. Mutat. 11, 69–75.PubMedCrossRefGoogle Scholar
  88. 88.
    van Belzen, M. J., Hiel, J. A., Weemaes, C. M., et al. (1998) A double missense mutation in the ATM gene of a Dutch family with ataxia telangiectasia. Hum. Genet. 102, 187–191.PubMedCrossRefGoogle Scholar
  89. 89.
    Stankovic, T., Kidd, A. M., Sutcliffe, A., et al. (1998) ATM mutations and phenotypes in ataxiatelangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am. J. Hum. Genet. 62, 334–345.PubMedCrossRefGoogle Scholar
  90. 90.
    Xu, C. F., Chambers, J. A., Nicolai, H., et a;. (1997) Mutations and alternative splicing of the BRCA1 gene in UK breast/ovarian cancer families. Genes. Chromosomes Cancer 18, 102–110.PubMedCrossRefGoogle Scholar
  91. 91.
    Brown, M. A. (1997) Tumor suppressor genes and human cancer. Adv. Genet. 36, 45–135.PubMedCrossRefGoogle Scholar
  92. 92.
    Vorechovsky, I., Luo, L., Lindblom, A., et al. (1996) ATM mutations in cancer families. Cancer Res. 56, 4130–4133.PubMedGoogle Scholar
  93. 93.
    Roy, N., Laflamme, G., and Raymond, V. (1992) 5′ untranslated sequences modulate rapid mRNA degradation mediated by 3′ AU-rich element in v-/c-fos recombinants. Nucleic Acids Res. 20, 5753–5762.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Neil V. Whittock
    • 1
  • Louise Izatt
    • 2
  1. 1.Institute of Biomedical and Clinical SciencePeninsula Medical SchoolExeterUK
  2. 2.Department of Clinical GeneticsGuy’s and St. Thomas’ HospitalsLondonUK

Personalised recommendations