Introduction to Capillary Electrophoresis of DNA

Biomedical Applications
  • Beatriz Sanchez-Vega
Part of the Springer Protocols Handbooks book series (SPH)


Capillary electrophoresis (CE) separations are carried out inside a capillary tube, which usually has a diameter of 50 μm to facilitate temperature control. The length of the capillary differs in different applications, but it is typically in the region of 20–50 cm. The capillaries most widely used are fused silica covered with an external protective coating. A small portion of this coating is removed to form a window for detection purposes. The ends of the capillary are dipped into reservoirs filled with the electrolyte. Electrodes made of an inert material such as platinum are also inserted into the electrolyte reservoirs to complete the electrical circuit. The capillary is filled with running buffer, one end is dipped into the sample, and an electric field (electrokinetic injection) or pressure is applied to introduce the sample inside the capillary. Migration through the capillary is driven by application of a high-voltage current (10–30 kV).


Capillary Electrophoresis Congenital Adrenal Hyperplasia Peptide Nucleic Acid Hereditary Hemochromatosis Heteroduplex Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heller, C. (2001) Principles of DNA separation with capillary electrophoresis. Electrophoresis 22, 629–643.PubMedGoogle Scholar
  2. 2.
    Liu, M. S. and Chen, F. T. (2000) Rapid analysis of amplified double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection. Mol. Biotechnol. 15, 143–146.PubMedGoogle Scholar
  3. 3.
    Gong, X. and Yeung, E. S. (2000) Genetic typing and HIV-1 diagnosis by using 96 capillary array electrophoresis and ultraviolet absorption detection. J. Chromatogr. B: Biomed. Sci. Appl. 741, 15–21.Google Scholar
  4. 4.
    Zhang, N. and Yeung, E. S. (1998) On-line coupling of polymerase chain reaction and capillary electrophoresis for automatic DNA typing and HIV-1 diagnosis. J. Chromatogr. B. Biomed. Sci. Appl. 714, 3–11.PubMedGoogle Scholar
  5. 5.
    Lu, W., Han, D. S., Yuan, J., and Andrieu, J. M. (1994) Multi-target PCR analysis by capillary electrophoresis and laser-induced fluorescence. Nature 368, 269–271.PubMedGoogle Scholar
  6. 6.
    Rossomando, E. F., White, L., and Ulfelder, K. J. (1994) Capillary electrophoresis: separation and quantitation of reverse transcriptase polymerase chain reaction products from polio virus. J. Chromatogr. B: Biomed. Sci. Appl. 656, 159–168.Google Scholar
  7. 7.
    Li, N., Tan, W. G., Tsang, R. Y., Tyrrell, D. L., and Dovichi, N. J. (2002) Quantitative polymerase chain reaction using capillary electrophoresis with laser-induced fluorescence detection: analysis of duck hepatitis B. Anal. Bioanal. Chem. 374, 269–273.PubMedGoogle Scholar
  8. 8.
    Tan, W. G., Tyrrell, D. L., and Dovichi, N. J. (1999) Detection of duck hepatitis B virus DNA fragments using on-column intercalating dye labeling with capillary electrophoresis-laser-induced fluorescence. J. Chromatogr. A 853, 309–319.PubMedGoogle Scholar
  9. 9.
    Gelfi, C., Orsi, A., Leoncini, F., et al. (1995) Amplification of 18 dystrophin gene exons in DMD/ BMD patients: simultaneous resolution by capillary electrophoresis in sieving liquid polymers. Biotechniques 19, 254–258, 260–263.PubMedGoogle Scholar
  10. 10.
    Shen, Y., Xu, Q., Han, F., et al. (1999) Application of capillary nongel sieving electrophoresis for gene analysis. Electrophoresis 20, 1822–1828.PubMedGoogle Scholar
  11. 11.
    Guttman, A., Barta, C., Szoke, M., Sasvari-Szekely, M., and Kalasz, H. (1998) Real-time detection of allele-specific polymerase chain reaction products by automated ultra-thin-layer agarose gel electrophoresis. J. Chromatogr. A 828, 481–487.PubMedGoogle Scholar
  12. 12.
    Gelfi, C., Righetti, P. G., Brancolini, V., Cremonesi, L., and Ferrari, M. (1994) Capillary electrophoresis in polymer networks for analysis of PCR products: detection of delta F508 mutation in cystic fibrosis. Clin. Chem. 40, 1603–1605.PubMedGoogle Scholar
  13. 13.
    Kiyoi, H. and Naoe, T. (2002) FLT3 in human hematologic malignancies. Leukemia Lymphoma 43, 1541–1547.PubMedGoogle Scholar
  14. 14.
    Greiner, T. C. and Rubocki, R. J. (2002) Effectiveness of capillary electrophoresis using fluorescent-labeled primers in detecting T-cell receptor gamma gene rearrangements. J. Mol. Diagn. 4, 137–143.PubMedGoogle Scholar
  15. 15.
    Novella, E., Giaretta, I., Elice, F., et al. (2002) Fluorescent polymerase chain reaction and capillary electrophoresis for IgH rearrangement and minimal residual disease evaluation in multiple myeloma. Haematologica 87, 1157–1164.PubMedGoogle Scholar
  16. 16.
    Knudson, A. G. (2002) Cancer genetics. Am. J. Med. Genet. 111, 96–102.PubMedGoogle Scholar
  17. 17.
    Martinelli, G., Testoni, N., Montefusco, V., et al. (1998) Detection of bcr-abl transcript in chronic myelogenous leukemia patients by reverse-transcription-polymerase chain reaction and capillary electrophoresis. Haematologica 83, 593–601.PubMedGoogle Scholar
  18. 18.
    Sanchez-Vega, B., Vega, F., Medeiros, L. J., Lee, M. S., and Luthra, R. (2002) Quantification of bcl-2/JH fusion sequences and a control gene by multiplex real-time PCR coupled with automated amplicon sizing by capillary electrophoresis. J. Mol. Diagn. 4, 223–229.PubMedGoogle Scholar
  19. 19.
    Matyas, G., Giunta, C., Steinmann, B., Hossle, J. P., and Hellwig, R. (2002) Quantification of single nucleotide polymorphisms: a novel method that combines primer extension assay and capillary electrophoresis. Hum. Mutat. 19, 58–68.PubMedGoogle Scholar
  20. 20.
    Piggee, C. A., Muth, J., Carrilho, E., and Karger, B. L. (1997) Capillary electrophoresis for the detection of known point mutations by single-nucleotide primer extension and laser-induced fluorescence detection. J. Chromatogr. A 781, 367–375.PubMedGoogle Scholar
  21. 21.
    Vreeland, W. N., Meagher, R. J., and Barron, A. E. (2002) Multiplexed, high-throughput genotyping by single-base extension and end-labeled free-solution electrophoresis. Anal. Chem. 74, 4328–4333.PubMedGoogle Scholar
  22. 22.
    Bugalho, M. J., Domingues, R., and Sobrinho, L. (2002) The minisequencing method: a simple strategy for genetic screening of MEN 2 families. BMC Genet. 3, 8.PubMedGoogle Scholar
  23. 23.
    Zsolnai, A., Anton, I., Kuhn, C., and Fesus, L. (2003) Detection of single-nucleotide polymorphisms coding for three ovine prion protein variants by primer extension assay and capillary electrophoresis. Electrophoresis 24, 634–638.PubMedGoogle Scholar
  24. 24.
    Arakawa, H., Uetanaka, K., Maeda, M., Tsuji, A., Matsubara, Y., and Narisawa, K. (1994) Analysis of polymerase chain reaction-product by capillary electrophoresis with laser-induced fluorescence detection and its application to the diagnosis of medium-chain acyl-coenzyme A dehydrogenase deficiency. J. Chromatogr. A 680, 517–523.PubMedGoogle Scholar
  25. 25.
    Barta, C., Sasvari-Szekely, M., and Guttman, A. (1998) Simultaneous analysis of various mutations on the 21-hydroxylase gene by multi-allele specific amplification and capillary gel electrophoresis. J. Chromatogr. A 817, 281–286.PubMedGoogle Scholar
  26. 26.
    Lehmann, R., Koch, M., Pfohl, M., Voelter, W., Haring, H. U., and Liebich, H. M. (1996) Screening and identification of familial defective apolipoprotein B-100 in clinical samples by capillary gel electrophoresis. J. Chromatogr. A 744, 187–194.PubMedGoogle Scholar
  27. 27.
    van de Locht, L. T., Kuypers, A. W., Verbruggen, B. W., Linssen, P. C., Novakova, I. R., and Mensink, E. J. (1995) Semi-automated detection of the factor V mutation by allele specific amplification and capillary electrophoresis. Thromb. Haemost. 74, 1276–1279.PubMedGoogle Scholar
  28. 28.
    Gomez-Llorente, M. A., Suarez, A., Gomez-Llorente, C., et al. (2001) Analysis of 31 CFTR mutations in 55 families from the South of Spain. Early Hum. Dev. 65(Suppl.), S161–S164.PubMedGoogle Scholar
  29. 29.
    Day, N. S., Tadin, M., Christiano, A. M., Lanzano, P., Piomelli, S., and Brown, S. (2002) Rapid prenatal diagnosis of sickle cell diseases using oligonucleotide ligation assay coupled with laserinduced capillary fluorescence detection. Prenat. Diagn. 22, 686–691.PubMedGoogle Scholar
  30. 30.
    Somsen, G. W., Welten, H. T., Mulder, F. P., Swart, C. W., Kema, I. P., and de Jong, G. J. (2002) Capillary electrophoresis with laser-induced fluorescence detection for fast and reliable apolipoprotein E genotyping. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 775, 17–26.Google Scholar
  31. 31.
    Mitchell, C. E., Belinsky, S. A., and Lechner, J. F. (1995) Detection and quantitation of mutant Kras codon 12 restriction fragments by capillary electrophoresis. Anal. Biochem. 224, 148–153.PubMedGoogle Scholar
  32. 32.
    Butler, J. M., Wilson, M. R., and Reeder, D. J. (1998) Rapid mitochondrial DNA typing using restriction enzyme digestion of polymerase chain reaction amplicons followed by capillary electrophoresis separation with laser-induced fluorescence detection. Electrophoresis 19, 119–124.PubMedGoogle Scholar
  33. 33.
    Kourkine, I. V., Hestekin, C. N., and Barron, A. E. (2002) Technical challenges in applying capillary electrophoresis-single strand conformation polymorphism for routine genetic analysis. Electrophoresis 23, 1375–1385.PubMedGoogle Scholar
  34. 34.
    Atha, D. H., Kasprzak, W., O’Connell, C. D., and Shapiro, B. A. (2001) Prediction of DNA singlestrand conformation polymorphism: analysis by capillary electrophoresis and computerized DNA modeling. Nucleic Acids Res. 29, 4643–4653.PubMedGoogle Scholar
  35. 35.
    Liu, M. S., Rampal, S., Hsiang, D., and Chen, F. T. (2000) Automated DNA mutation analysis by single-strand conformation polymorphism using capillary electrophoresis with laser-induced fluorescence detection. Mol. Biotechnol. 15, 21–27.PubMedGoogle Scholar
  36. 36.
    Gillman, L. M., Gunton, J., Turenne, C. Y., Wolfe, J. and Kabani, A. M. (2001) Identification of Mycobacterium species by multiple-fluorescence PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J. Clin. Microbiol. 39, 3085–3091.PubMedGoogle Scholar
  37. 37.
    Glavac, D., Potocnik, U., Podpecnik, D., Zizek, T., Smerkolj, S., and Ravnik-Glavac, M. (2002) Correlation of MFOLD-predicted DNA secondary structures with separation patterns obtained by capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis. Hum. Mutat. 19, 384–394.PubMedGoogle Scholar
  38. 38.
    Rozycka, M., Collins, N., Stratton, M. R., and Wooster, R. (2000) Rapid detection of DNA sequence variants by conformation-sensitive capillary electrophoresis. Genomics 70, 34–40.PubMedGoogle Scholar
  39. 39.
    Iwamoto, T., Sonobe, T., and Hayashi, K. (2002) Novel algorithm identifies species in a polymycobacterial sample by fluorescence capillary electrophoresis-based single-strand conformation polymorphism analysis. J. Clin. Microbiol. 40, 4705–4712.PubMedGoogle Scholar
  40. 40.
    Raucci, G., Maggi, C. A. and Parente, D. (2000) Capillary electrophoresis of supercoiled DNA molecules: parameters governing the resolution of topoisomers and their separation from open forms. Anal. Chem. 72, 821–826.PubMedGoogle Scholar
  41. 41.
    Kringen, P., Egedal, S., Pedersen, J. C., et al. (2002) BRCA1 mutation screening using restriction endonuclase fingerprinting-single-strand conformation polymorphism in an automated capillary electrophoresis system. Electrophoresis 23, 4085–4091.PubMedGoogle Scholar
  42. 42.
    Baba, Y., Tomisaki, R., Sumita, C., et al. (1995) Rapid typing of variable number of tandem repeat locus in the human apolipoprotein B gene for DNA diagnosis of heart disease by polymerase chain reaction and capillary electrophoresis. Electrophoresis 16, 1437–1440.PubMedGoogle Scholar
  43. 43.
    Lindstedt, B. A., Ryberg, D., Zienolddiny, S., Khan, H., and Haugen, A. (1999) Hras1 VNTR alleles as susceptibility markers for lung cancer: relationship to microsatellite instability in tumors. Anticancer Res. 19, 5523–5527.PubMedGoogle Scholar
  44. 44.
    Dib, C., Faure, S., Fizames, C., et al. (1996) A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154.PubMedGoogle Scholar
  45. 45.
    Dietrich, W. F., Miller, J. C., Steen, R. G., et al. (1994) A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–245.PubMedGoogle Scholar
  46. 46.
    Breen, G., Sham, P., Li, T., Shaw, D., Collier, D. A., and St Clair, D. (1999) Accuracy and sensitivity of DNA pooling with microsatellite repeats using capillary electrophoresis. Mol. Cell. Probes 13, 359–365.PubMedGoogle Scholar
  47. 47.
    Cook, E. H., Jr., Courchesne, R. Y., Cox, N. J., et al. (1998) Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am. J. Hum. Genet. 62, 1077–1083.PubMedGoogle Scholar
  48. 48.
    Gelfi, C., Cossu, G., Carta, P., Serra, M., and Righetti, P. G. (1995) Gene dosage in capillary electrophoresis: pre-natal diagnosis of Down’s syndrome. J. Chromatogr. A 718, 405–412.PubMedGoogle Scholar
  49. 49.
    Latour, P., Boutrand, L., Levy, N., et al. (2001) Polymorphic short tandem repeats for diagnosis of the Charcot-Marie-Tooth 1A duplication. Clin. Chem. 47, 829–37.PubMedGoogle Scholar
  50. 50.
    Van Hoofstat, D. E., Deforce, D. L., Hubert De Pauw, I. P., and Van den Eeckhout, E. G. (1999) DNA typing of fingerprints using capillary electrophoresis: effect of dactyloscopic powders. Electrophoresis 20, 2870–2876.PubMedGoogle Scholar
  51. 51.
    Moretti, T. R., Baumstark, A. L., Defenbaugh, D. A., Keys, K. M., Brown, A. L., and Budowle, B. (2001) Validation of STR typing by capillary electrophoresis. J. Forensic Sci. 46, 661–676.PubMedGoogle Scholar
  52. 52.
    Laszik, A., Brinkmann, B., Sotonyi, P., and Falus, A. (2000) Automated fluorescent detection of a 10 loci multiplex for paternity testing. Acta Biol. Hung. 51, 99–105.PubMedGoogle Scholar
  53. 53.
    Lion, T. (2003) Summary: reports on quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection. Leukemia 17, 252–254.PubMedGoogle Scholar
  54. 54.
    Boland, C. R., Thibodeau, S. N., Hamilton, S. R., et al. (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248–5257.PubMedGoogle Scholar
  55. 55.
    Berg, K. D., Glaser, C. L., Thompson, R. E., Hamilton, S. R., Griffin, C. A., and Eshleman, J. R. (2000) Detection of microsatellite instability by fluorescence multiplex polymerase chain reaction. J. Mol. Diagn. 2, 20–28.PubMedGoogle Scholar
  56. 56.
    Wada, T., Louhelainen, J., Hemminki, K., et al. (2000) Bladder cancer: allelic deletions at and around the retinoblastoma tumor suppressor gene in relation to stage and grade. Clin. Cancer Res. 6, 610–615.PubMedGoogle Scholar
  57. 57.
    Yoshino, I., Fukuyama, S., Kameyama, T., Shikada, Y., Oda, S., Maehara, Y., and Sugimachi, K. (2003) Detection of loss of heterozygosity by high-resolution fluorescent system in non-small cell lung cancer: association of loss of heterozygosity with smoking and tumor progression. Chest 123, 545–550.PubMedGoogle Scholar
  58. 58.
    Murthy, S. K., DiFrancesco, L. M., Ogilvie, R. T., and Demetrick, D. J. (2002) Loss of heterozygosity associated with uniparental disomy in breast carcinoma. Mod. Pathol. 15, 1241–1250.PubMedGoogle Scholar
  59. 59.
    Fukunaga, K., Wada, T., Matsumoto, H., Yoshihiro, S., Matsuyama, H. and Naito, K. (2002) Renal cell carcinoma: allelic loss at chromosome 9 using the fluorescent multiplex-polymerase chain reaction technique. Hum. Pathol. 33, 910–914.PubMedGoogle Scholar
  60. 60.
    Sell, S. M., Patel, S., Stracner, D., and Meloni, A. (2001) Allelic loss analysis by capillary electrophoresis: an accurate, automated method for detection of deletions in solid tumors. Genet. Test 5, 267–268.PubMedGoogle Scholar
  61. 61.
    Hussey, J., Lockhart, P. J., Seltzer, W., et al. (2002) Accurate determination of ataxin-2 polyglutamine expansion in patients with intermediate-range repeats. Genet. Test 6, 217–220.PubMedGoogle Scholar
  62. 62.
    O’Connell, C. D., Atha, D. H., Jakupciak, J. P., Amos, J. A., and Richie, K. (2002) Standardization of PCR amplification for fragile X trinucleotide repeat measurements. Clin. Genet. 61, 13–20.Google Scholar
  63. 63.
    Kiba, Y. and Baba, Y. (2001) Analysis of triplet-repeat DNA by capillary electrophoresis. Methods Mol. Biol. 163, 221–229.PubMedGoogle Scholar
  64. 64.
    Nesi, M., Righetti, P. G., Patrosso, M. C., Ferlini, A., and Chiari, M. (1994) Capillary electrophoresis of polymerase chain reaction-amplified products in polymer networks: the case of Kennedy’s disease. Electrophoresis 15, 644–646.PubMedGoogle Scholar
  65. 65.
    Dorschner, M. O., Barden, D., and Stephens, K. (2002) Diagnosis of five spinocerebellar ataxia disorders by multiplex amplification and capillary electrophoresis. J. Mol. Diagn. 4, 108–113.PubMedGoogle Scholar
  66. 66.
    Williams, L. C., Hegde, M. R., Herrera, G., Stapleton, P. M., and Love, D. R. (1999) Comparative semi-automated analysis of (CAG) repeats in the Huntington disease gene: use of internal standards. Mol Cell Probes 13, 283–289.PubMedGoogle Scholar
  67. 67.
    Tian, H., Brody, L. C. and Landers, J. P. (2000) Rapid detection of deletion, insertion, and substitution mutations via heteroduplex analysis using capillary-and microchip-based electrophoresis. Genome Res. 10, 1403–13.PubMedGoogle Scholar
  68. 68.
    O’Connor, F., Fitzgerald, D. J., and Murphy, R. P. (2000) An automated heteroduplex assay for the Pi(A) polymorphism of glycoprotein IIb/IIIa, multiplexed with two prothrombotic genetic markers. Thromb. Haemost. 83, 248–252.Google Scholar
  69. 69.
    Jackson, H. A., Bowen, D. J., and Worwood, M. (1997) Rapid genetic screening for haemochromatosis using heteroduplex technology. Br. J. Haematol. 98, 856–859.PubMedGoogle Scholar
  70. 70.
    Bowen, D. J., Standen, G. R., Granville, S., Bowley, S., Wood, N. A., and Bidwell, J. (1997) Genetic diagnosis of factor V Leiden using heteroduplex technology. Thromb. Haemost. 77, 119–122.PubMedGoogle Scholar
  71. 71.
    Thomas, G. A., Williams, D. L., and Soper, S. A. (2001) Capillary electrophoresis-based heteroduplex analysis with a universal heteroduplex generator for detection of point mutations associated with rifampin resistance in tuberculosis. Clin. Chem. 47, 1195–1203.PubMedGoogle Scholar
  72. 72.
    Khrapko, K., Coller, H. A., Hanekamp, J. S., and Thilly, W. G. (1998) Identification of point mutations in mixtures by capillary electrophoresis hybridization. Nucleic Acids Res. 26, 5738–5740.PubMedGoogle Scholar
  73. 73.
    Kozlowski, P. and Krzyzosiak, W. J. (2001) Combined SSCP/duplex analysis by capillary electrophoresis for more efficient mutation detection. Nucleic Acids Res. 29, E71.PubMedGoogle Scholar
  74. 74.
    Kourkine, I. V., Hestekin, C. N., Magnusdottir, S. O., and Barron, A. E. (2002) Optimized sample preparation for tandem capillary electrophoresis single-stranded conformational polymorphism/heteroduplex analysis. Biotechniques 33, 318–320, 322, 324–325.PubMedGoogle Scholar
  75. 75.
    Tian, H., Brody, L. C., Fan, S., Huang, Z., and Landers, J. P. (2001) Capillary and microchip electrophoresis for rapid detection of known mutations by combining allele-specific DNA amplification with heteroduplex analysis. Clin. Chem. 47, 173–185.PubMedGoogle Scholar
  76. 76.
    Bianchi, N., Mischiati, C., Feriotto, G., et al. (1994) Capillary electrophoresis: detection of hybridization between synthetic oligonucleotides and HIV-1 genomic DNA amplified by polymerase-chain reaction. J. Virol. Methods 47, 321–329.PubMedGoogle Scholar
  77. 77.
    Armitage, B. A. (2003) The impact of nucleic acid secondary structure on PNA hybridization. Drug Discov. Today 8, 222–228.PubMedGoogle Scholar
  78. 78.
    Basile, A., Giuliani, A., Pirri, G., and Chiari, M. (2002) Use of peptide nucleic acid probes for detecting DNA single-base mutations by capillary electrophoresis. Electrophoresis 23, 926–929.PubMedGoogle Scholar
  79. 79.
    Igloi, G. L. (2001) Simultaneous identification of mutations by dual-parameter multiplex hybridization in peptide nucleic acid-containing virtual arrays. Genomics 74, 402–407.PubMedGoogle Scholar
  80. 80.
    Freudemann, T., von Brocke, A., and Bayer, E. (2001) On-line coupling of capillary gel electrophoresis with electrospray mass spectrometry for oligonucleotide analysis. Anal. Chem. 73, 2587–2593.Google Scholar
  81. 81.
    McKeon, J. and Khaledi, M. G. (2001) Quantitative nuclear and cytoplasmic localization of antisense oligonucleotides by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 22, 3765–3770.PubMedGoogle Scholar
  82. 82.
    Gilar, M., Belenky, A., Budman, Y., Smisek, D. L., and Cohen, A. S. (1998) Study of phosphorothioate-modified oligonucleotide resistance to 3’-exonuclease using capillary electrophoresis. J. Chromatogr. B: Biomed. Sci. Appl. 714, 13–20.Google Scholar
  83. 83.
    Zellweger, T., Miyake, H., Cooper, S., et al. (2001) Antitumor activity of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2’-O-(2-methoxy)ethyl chemistry. J Pharmacol Exp Ther 298, 934–40.PubMedGoogle Scholar
  84. 84.
    DeDionisio, L. A. (2001) Analysis of modified oligonucleotides with capillary gel electrophoresis. Methods Mol. Biol. 162, 353–370.PubMedGoogle Scholar
  85. 85.
    Lagu, A. L. (1999) Applications of capillary electrophoresis in biotechnology. Electrophoresis 20, 3145–3155.PubMedGoogle Scholar
  86. 86.
    Zhu, L., Lee, H. K., Lin, B., and Yeung, E. S. (2001) Spatial temperature gradient capillary electrophoresis for DNA mutation detection. Electrophoresis 22, 3683–3687.PubMedGoogle Scholar
  87. 87.
    Kristensen, A. T., Bjorheim, J., and Ekstrom, P. O. (2002) Detection of mutations in exon 8 of TP53 by temperature gradient 96-capillary array electrophoresis. Biotechniques 33, 650–653.PubMedGoogle Scholar
  88. 88.
    Weinfeld, M., Xing, J. Z., Lee, J., Leadon, S. A., and Le, X. C. (2002) Immunofluorescence detection of radiation-induced DNA base damage. Mil. Med. 167, 2–4.PubMedGoogle Scholar
  89. 89.
    Fiscus, R. R., Leung, C. P., Yuen, J. P., and Chan, H. C. (2001) Quantification of apoptotic DNA fragmentation in a transformed uterine epithelial cell line, HRE-H9, using capillary electrophoresis with laser-induced fluorescence detector (CE-LIF). Cell Biol. Int. 25, 1007–1011.PubMedGoogle Scholar
  90. 90.
    Reik, W., Dean, W., and Walter, J. (2001) Epigenetic reprogramming in mammalian development. Science 293, 1089–1093.PubMedGoogle Scholar
  91. 91.
    Panning, B. and Jaenisch, R. (1996) DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev. 10, 1991–2002.PubMedGoogle Scholar
  92. 92.
    Li, E., Beard, C., and Jaenisch, R. (1993) Role for DNA methylation in genomic imprinting. Nature 366, 362–365.PubMedGoogle Scholar
  93. 93.
    Jones, P. A. and Baylin, S. B. (2002) The fundamental role of epigenetic events in cancer. Nature Rev. Genet. 3, 415–428.PubMedGoogle Scholar
  94. 94.
    Fraga, M. F., Rodriguez, R., and Canal, M. J. (2000) Rapid quantification of DNA methylation by high performance capillary electrophoresis. Electrophoresis 21, 2990–2994.PubMedGoogle Scholar
  95. 95.
    Stach, D., Schmitz, O. J., Stilgenbauer, S., et al. (2003) Capillary electrophoretic analysis of genomic DNA methylation levels. Nucleic Acids Res. 31, E2–E2.PubMedGoogle Scholar
  96. 96.
    Kotler, L., He, H., Miller, A. W., and Karger, B. L. (2002) DNA sequencing of close to 1000 bases in 40 minutes by capillary electrophoresis using dimethyl sulfoxide and urea as denaturants in replaceable linear polyacrylamide solutions. Electrophoresis 23, 3062–3070.PubMedGoogle Scholar
  97. 97.
    Albarghouthi, M. N. and Barron, A. E. (2000) Polymeric matrices for DNA sequencing by capillary electrophoresis. Electrophoresis 21, 4096–40111.PubMedGoogle Scholar
  98. 98.
    Dolnik, V. (1999) DNA sequencing by capillary electrophoresis. J. Biochem. Biophys. Methods 41, 103–119 (review).PubMedGoogle Scholar
  99. 99.
    Nicod, J. C. and Largiader, C. R. (2003) SNPs by AFLP (SBA): a rapid SNP isolation strategy for non-model organisms. Nucleic Acids Res. 31, e19.Google Scholar
  100. 100.
    Doglio, A., Laffont, C., Thyss, S., and Lefebvre, J. C. (1998) Rapid genotyping of hepatitis C virus by direct cycle sequencing of PCR-amplified cDNAs and capillary electrophoresis analysis. Res. Virol. 149, 219–227.PubMedGoogle Scholar
  101. 101.
    Blazej, R. G., Paegel, B. M., and Mathies, R. A. (2003) Polymorphism ratio sequencing: a new approach for single nucleotide polymorphism discovery and genotyping. Genome Res. 13, 287–293.PubMedGoogle Scholar
  102. 102.
    Murphy, K. M. and Eshleman, J. R. (2002) Simultaneous sequencing of multiple polymerase chain reaction products and combined polymerase chain reaction with cycle sequencing in single reactions. Am. J. Pathol. 161, 27–33.PubMedGoogle Scholar
  103. 103.
    Woolley, A. T. and Mathies, R. A. (1994) Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Natl. Acad. Sci. USA 91, 11,348–11,352.PubMedGoogle Scholar
  104. 104.
    Gao, Q., Shi, Y., and Liu, S. (2001) Multiple-channel microchips for high-throughput DNA analysis by capillary electrophoresis. Fresenius J. Anal. Chem. 371, 137–145.PubMedGoogle Scholar
  105. 105.
    Medintz, I. L., Paegel, B. M., Blazej, R. G., et al. (2001) High-performance genetic analysis using microfabricated capillary array electrophoresis microplates. Electrophoresis 22, 3845–3856.PubMedGoogle Scholar
  106. 106.
    Medintz, I. L., Berti, L., Emrich, C. A., Tom, J., Scherer, J. R., and Mathies, R. A. (2001) Genotyping energy-transfer-cassette-labeled short-tandem-repeat amplicons with capillary array electrophoresis microchannel plates. Clin. Chem. 47, 1614–1621.PubMedGoogle Scholar
  107. 107.
    Wessagowit, V. and South, A. P. (2002) Dermatological applications of DNA array technology. Clin. Exp. Dermatol. 27, 485–492.PubMedGoogle Scholar
  108. 108.
    Gawron, A. J., Martin, R. S., and Lunte, S. M. (2001) Microchip electrophoretic separation systems for biomedical and pharmaceutical analysis. Eur. J. Pharm. Sci. 14 Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Beatriz Sanchez-Vega
    • 1
  1. 1.University of Texas MD Anderson Cancer CenterHouston

Personalised recommendations