Advertisement

Quantitative Analysis of DNA Sequences by PCR and Solid-Phase Minisequencing

  • Anu Suomalainen
  • Ann-Christine Syvänen
Protocol
  • 1.4k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Astract

The PCR technique provides a highly specific and sensitive means for analyzing nucleic acids, but it does not allow their direct quantification. This limitation is because the efficiency of PCR depends on the amount of template sequence present in the sample, and the amplification is exponential only at low template concentrations (1). Owing to this plateau effect of PCR, the amount of amplification product does not directly reflect the original amount of template. Moreover, subtle differences in reaction conditions, such as material from biological samples, may cause significant sample-to-sample variation in the final yield of the PCR product.

Keywords

Molecular Genetic Laboratory Molecular Beacon Probe Determine Allele Frequency Minisequencing Reaction Scintillate Polystyrene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Syvänen, A.-C., Bengtström, M., Tenhunen, J., and Söderlund, H. (1988) Quantification of polymerase chain reaction products by affinity-based hybrid collection. Nucleic Acids Res. 16, 11,327–11,338.PubMedCrossRefGoogle Scholar
  2. 2.
    Murphy, L. D., Herzog, C. E., Rudick, J. B., Fojo, A. T., and Bates, S. E. (1990) Use of the polymerase chain reaction in the quantitation of mdr-1 gene expression. Biochemistry 29, 10,351–10,356.PubMedCrossRefGoogle Scholar
  3. 3.
    Noonan, K. E., Beck, C., Holzmayer, T. A., et al. (1990) Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 7160–7164.PubMedCrossRefGoogle Scholar
  4. 4.
    Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W., and Deetz, K. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362.PubMedGoogle Scholar
  5. 5.
    Tyagi, S. and Kramer, F. R. (1996). Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 14, 303–308.PubMedCrossRefGoogle Scholar
  6. 6.
    Chelly, J., Kaplan, J. C., Maire, P., Gautron, S., and Kahn, A. (1988) Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature 333, 858–860.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang, A. M., Doyle, M. V. and Mark, D. F. (1989) Quantitation of mRNA by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86, 9717–9721.PubMedCrossRefGoogle Scholar
  8. 8.
    Gilliland, G., Perrin, S., Blanchard, K., and Bunn, H. F. (1990) Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 2725–2729.PubMedCrossRefGoogle Scholar
  9. 9.
    Syvänen, A.-C., Aalto-Setälä, K., Harju, L., Kontula, K., and Söderlund, H. (1990) A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics 8, 684–692.PubMedCrossRefGoogle Scholar
  10. 10.
    Syvänen, A.-C., Ikonen, E., Manninen, T., et al. (1992) Convenient and quantitative determination of the frequency of a mutant allele using solid-phase minisequencing: application to aspartylglucosaminuria in Finland. Genomics 12, 590–595.PubMedCrossRefGoogle Scholar
  11. 11.
    Ikonen, E., Manninen, T., Peltonen, L., and Syvänen, A.-C. (1992). Quantitative determination of rare mRNA species by PCR and solid-phase minisequencing. PCR Methods Appl. 1, 234–240.PubMedGoogle Scholar
  12. 12.
    Syvänen, A.-C., Sajantila, A., and Lukka, M. (1993). Identification of individuals by analysis of biallelic DNA markers, using PCR and solid-phase minisequencing. Am. J. Hum. Genet. 52, 46–59.PubMedGoogle Scholar
  13. 13.
    Suomalainen, A., Majander, A., Pihko, H., Peltonen, L., and Syvänen, A.-C. (1993) Quantification of tRNA3243(Leu) point mutation of mitochondrial DNA in MELAS patients and its effects on mitochondrial transcription. Hum Mol Genet, 2, 525–534.PubMedCrossRefGoogle Scholar
  14. 14.
    Suomalainen, A. and Syvänen, A.-C. (2000) Quantitative analysis of human DNA sequences by PCR and solid-phase minisequencing. Mol. Biotechnol. 15, 123–131.PubMedCrossRefGoogle Scholar
  15. 15.
    Ihalainen, J., Siitari, H., Laine, S., Syvänen, A.-C., and Palotie, A. (1994) Towards automatic detection of point mutations: use of scintillating microplates in solid-phase minisequencing. BioTechniques 16, 938–943.PubMedGoogle Scholar
  16. 16.
    Suomalainen, A., Kollmann, P., Octave, J. N., Söderlund, H., and Syvänen, A.-C. (1993) Quantification of mitochondrial DNA carrying the tRNA(8344Lys) point mutation in myoclonus epilepsy and ragged-red-fiber disease. Eur. J. Hum. Genet. 1, 88–95.PubMedGoogle Scholar
  17. 17.
    Rahman, S., Poulton, J., Marchington, D., and Suomalainen, A. (2001) Decrease of 3243 A_G mtDNA mutation from blood in MELAS syndrome: a longitudinal study. Am. J. Hum. Genet. 68, 238–240.PubMedCrossRefGoogle Scholar
  18. 18.
    Olsson, C., Johnsen, E., Nilsson, M., Wilander, E., Syvänen, A.-C., and Lagerström-Fermer, M. (2001) The level of the mitochondrial mutation A3243G decreases upon ageing in epithelial cells from individuals with diabetes and deafness. Eur. J. Hum. Genet. 9, 917–921.PubMedCrossRefGoogle Scholar
  19. 19.
    Laan, M., Grön-Virta, K., Salo, A., et al. (1995) Solid-phase minisequencing confirmed by FISH analysis in determination of gene copy number. Hum. Genet. 96, 275–280.PubMedCrossRefGoogle Scholar
  20. 20.
    Fredriksson, M., Barbany, G., Liljedahl, U., Hermanson, M., Kataja, M., and Syvänen, A.-C. (2004) Assessing hematopoietic chimerism after allogeneic stem cell transplantation by multiplexed SNP genotyping using microarrays and quantitative analysis of SNP alleles. Leukemia 18, 1–12.CrossRefGoogle Scholar
  21. 21.
    Sachidanandam, R., Weissman, D., Schmidt, S. C., et al. (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933.PubMedCrossRefGoogle Scholar
  22. 22.
    Syvänen, A.-C. (1999) From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum. Mutat. 13, 1–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Lindroos, K., Sigurdsson, S., Johansson, K., Rönnblom, L., and Syvänen, A.-C. (2002) Multiplex SNP genotyping in pooled DNA samples by a four-colour microarray system. Nucleic Acids Res. 30, e70.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Anu Suomalainen
    • 1
  • Ann-Christine Syvänen
    • 2
  1. 1.Programme of Neurosciences and Department of NeurologyHelsinki UniversityHelsinkiFinland
  2. 2.Department of Medical SciencesUppsala UniversityUppsalaSweden

Personalised recommendations