Advertisement

Protein Amyloidose Misfolding

Mechanisms, Detection, and Pathological Implications
  • Nigil Satish Jeyashekar
  • Ajit Sadana
  • Tuan Vo-Dinh
Part of the Methods in Molecular Biology™ book series (MIMB, volume 300)

Summary

A variety of diseases result because of misfolded protein that deposits in extracellular space in the body. These deposits can be amorphous (disordered) or fibrillar (ordered). Inclusion bodies are an example of amorphous aggregates, and amyloid fibril is an example of fibrillar or ordered aggregates. In this chapter, we discuss a class of diseases caused by fibrillar aggregate deposits or amyloid fibrils called amyloidosis. We also review mechanisms by which different proteins misfold to form amyloid fibrils. Each amyloid fibril formed from a different protein causes a different disease by affecting a different organ in the body. However, the characteristics of different amyloid fibrils, namely structure and morphology, observed by electron microscopy and X-ray fiber diffraction appear to be quite similar in nature. We present therapeutic strategies developed to eliminate amyloid fibril formation. These strategies could possibly avert a whole class of fatal diseases caused by amyloid fibril deposition owing to similar characteristics of the amyloid fibrils.

Key Words

Amyloid fibril formation protein folding transthyretin lysozyme immunoglobulin Alzheimer disease Prions 

References

  1. 1.
    Kelly, J. W. (1996) Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Biol. 6, 11–17.Google Scholar
  2. 2.
    Yutani, K., Takayama, G., Goda, S., et al. (2000) The process of amyloid-like fibril formation by methionine aminopeptidase from a hyperthermophile, Pyrococcus furiosus. Biochemistry 39, 2769–2777.PubMedCrossRefGoogle Scholar
  3. 3.
    Fink, A. L. (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Folding Design 3, R9–R23.PubMedCrossRefGoogle Scholar
  4. 4.
    Minton, A. P. (2000) Implications of macromolecular crowding for protein assembly. Curr. Opin. Struct. Biol. 10, 34–39.PubMedCrossRefGoogle Scholar
  5. 5.
    Minton, A. P. (2000) Protein folding: thickening the broth. Curr. Biol. 10, R97–R99.PubMedCrossRefGoogle Scholar
  6. 6.
    Belloti, V., Mangione, P., and Stoppini, M. (1999) Biological activity and pathological implications of misfolded proteins. Cell. Mol. Life Sci. 55, 977–991.CrossRefGoogle Scholar
  7. 7.
    Kelly, J. W. (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106.PubMedCrossRefGoogle Scholar
  8. 8.
    Demchenko, A. P. (1999) Protein folding with molecular chaperones: stochastic process under control. Biophysics 45, 404–410.Google Scholar
  9. 9.
    Oza, V. B., Smith, C., Raman, P., et al. (2002) J. Med. Chem. 45, 321–332.PubMedCrossRefGoogle Scholar
  10. 10.
    Dobson, C. M. (2001) The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 356, 133–145.CrossRefGoogle Scholar
  11. 11.
    Serpell, L. C., Sunde, M., and Blake, C. C. F. (1997) The molecular basis of amyloidosis. Cell. Mol. Life Sci. 53, 871–887.PubMedCrossRefGoogle Scholar
  12. 12.
    Kiefhaber, T. (1995) Kinetic traps in lysozyme folding. Proc. Natl. Acad. Sci. USA 92, 9029–9033.PubMedCrossRefGoogle Scholar
  13. 13.
    Takano, K., Funahashi, J., and Yutani, K. (2001) The stability and folding process of amyloidogenic mutant human lysozymes. Eur. J. Biochem. 268, 155–159.PubMedCrossRefGoogle Scholar
  14. 14.
    Canet, D., Sunde, M., Last, A. M., Miranker, A., Spencer, A., Robinson, C. V., and Dobson, C. M. (1999) Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants. Biochemistry 38, 6419–6427.PubMedCrossRefGoogle Scholar
  15. 15.
    Lansbury, P. T., Jr. (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl. Acad. Sci. USA 96, 3342–3344.PubMedCrossRefGoogle Scholar
  16. 16.
    Konno, T. (2001) Amyloid-induced aggregation and precipitation of soluble proteins: an electrostatic contribution of the Alzheimer’s β(25–35) amyloid fibril. Biochemistry 40, 2148–2154.PubMedCrossRefGoogle Scholar
  17. 17.
    Wagner, M. R., Keane, D. M., Melchor, J. P., Auspaker, K. R., and Van Nostrand, W. E. (2000) Fibrillar amyloid β-protein binds protease nexin-2/amyloid β-protein precursor: stimulation of its inhibition of coagulation factor XIa. Biochemistry 39, 7420–7427.PubMedCrossRefGoogle Scholar
  18. 18.
    Caughey, B. (2000) Transmissible spongiform encephalopathies, amyloidoses and yeast prions: common threads? Nat. Med. 6, 751–754.PubMedCrossRefGoogle Scholar
  19. 19.
    Kelly, J. W. (1998) The environmental dependency of protein folding best explains prion and Amyloid diseases. Proc. Natl. Acad. Sci. USA 95, 930–932.PubMedCrossRefGoogle Scholar
  20. 20.
    Gujjaro, J. I., Sunde, M., Jones, J. A., Campbell, I. D., and Dobson, C. M. (1998) Amyloid fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. USA 95, 4224–4228.CrossRefGoogle Scholar
  21. 21.
    Kallijärvi, J., Haltia, M., and Baumann, M. (2001) Amphoterin includes a sequence motif which is homologous to the Alzheimer’s β-amyloid peptide (Aβ), forms Amyloid fibrils in vitro, and binds avidly to Aβ. Biochemistry 40, 10,032–10,037.PubMedCrossRefGoogle Scholar
  22. 22.
    Dobson, C. M. and Karplus, M. (1999) The fundamentals of protein folding: bringing together theory and experiment. Curr. Opin. Struct. Biol. 9, 92–101.PubMedCrossRefGoogle Scholar
  23. 23.
    Conway, K. A., Harper, J. D., and Lansbury, P. T., Jr. (2000) Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson’s disease are typical Amyloid. Biochemistry 39, 2552–2563.PubMedCrossRefGoogle Scholar
  24. 24.
    Ma, K., Clancy, E. L., Zhang, Y., Ray, D. G., Wollenberg, K., and Zagorski, M. G. (1999) Residue-specific pKa measurements of the β-peptide and mechanism of pH-induced Amyloid formation. J. Am. Chem. Soc. 121, 8698–8706.CrossRefGoogle Scholar
  25. 25.
    Lee, S. C., Lee, M. J., Choi, I., and Yu, M. H. (1997) Genetically engineered human interleukin-6 variant with enhanced stability. Biotechnol. Lett. 19, 885–888.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Nigil Satish Jeyashekar
    • 1
  • Ajit Sadana
    • 2
  • Tuan Vo-Dinh
    • 3
  1. 1.Chemical Engineering DepartmentUniversity of Mississippi, University, MSOak Ridge
  2. 2.Department of Chemical Engineering and Composite Structures and Nanoengineering Research GroupUniversity of Mississippi, University, MSOak Ridge
  3. 3.Center for Advanced Biomedical Photonics, Life Sciences DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations