Optical Nanosensors for Detecting Proteins and Biomarkers in Individual Living Cells

  • Tuan Vo-Dinh
Part of the Methods in Molecular Biology™ book series (MIMB, volume 300)


Recently, nanotechnology has been revolutionizing important areas in molecular biology and medicine, especially diagnostics and therapy at the molecular and cellular levels. The combination of nanotechnology, biology, advanced materials, and photonics opens up the possibility of detecting and manipulating atoms and molecules using nanodevices. This capability has the potential for a wide variety of medical uses at the cellular level. One of the most recent technological advances has been in the area of nanosensors. This chapter describes the principle of optical nanosensors, their development, and their applications for in vivo analysis of proteins and biomarkers in individual living cells. Nanosensors were fabricated with optical fibers pulled down to tips with distal ends in nanoscale dimensions. Nanosensors with immobilized bioreceptor probes (e.g., antibodies, enzyme substrate) that are selective to target analyte molecules are also referred to as nanobiosensors. Laser light is launched into the fiber, and the resulting evanescent field at the tip of the fiber is used to excite target molecules bound to the antibody molecules. A photometric detection system is used to detect the optical signal (e.g., fluorescence) originating from the analyte molecules or from the analyte-bioreceptor reaction.

Key Words

Nanosensor nanoprobe nanotechnology biosensor antibody single cell benzopyrene tetrol cancer 



I acknowledge the contributions of G. D. Griffin, J. P. Alarie, B. M. Cullum, and P. Kasili. This research was sponsored by the LDRD Project (Advanced Nanosensors), and by the US Department of Energy. Oak Ridge National Laboratory is managed for the Department of Energy by UT-Battelle, LLC, under contract DE-AC05-00OR22725.


  1. 1.
    Zandonella, C. (2003) The tiny tool kit. Nature 423, 10–12.PubMedCrossRefGoogle Scholar
  2. 2.
    Vo-Dinh, T., Tromberg, B. J., Griffin, G. D., Ambrose, K. R., Sepaniak, M. J., and Gardenhire, E. M. (1987) Antibody-based fiberoptics biosensor for the carcinogen benzo(a)pyrene. Appl. Spectrosc. 41(5), 735–738.CrossRefGoogle Scholar
  3. 3.
    Vo-Dinh, T. G. G. D. and Sepaniak, M. J. (1991) Optical antibody biosensor, in Fiber Optic Chemical Sensors and Biosensors (Wolfbeis, O. S., eds.), CRC Press, Boca Raton, FL, pp. 217–257.Google Scholar
  4. 4.
    Vo-Dinh, T., Sepaniak, M. J., Griffin, G. D., and Alarie, J. P. (1993) Immunosensors: principles and applications. Immunomethods 3, 85–90.CrossRefGoogle Scholar
  5. 5.
    Alarie, J. P. and Vo-Dinh, T. (1996) Antibody-based submicron biosensor for benzo a pyrene DNA adduct. Polycyclic Aromatic Compounds 8(1), 45–52.CrossRefGoogle Scholar
  6. 6.
    Alarie J. P. and Vo-Dinh, T. (1991) A fiberoptic cyclodextrin-based sensor. Talanta 38, 529–534.PubMedCrossRefGoogle Scholar
  7. 7.
    Tromberg, B. J., Sepaniak, M. J., Alarie, J. P., Vo-Dinh, T., and Santella, S. M. (1998) Development of antibody-based fiberoptics sensor for the detection of benzo(a)pyrene metabolite. Anal. Chem. 60, 1901–1905.CrossRefGoogle Scholar
  8. 8.
    Alarie, J. P., Bowyer, J. R., Sepaniak, M. J., Hoyt, A. M., and Vo-Dinh, T. (1990) Fluorescence monitoring of benzo(a)pyrene metabolite using a regenerable immunochemical-based fiberoptic sensor. Anal. Chim. Acta 236, 237–243.CrossRefGoogle Scholar
  9. 9.
    Bowyer, J. R. Alarie, J. P., Sepaniak, M. J., Vo-Dinh, T., and Thompson, R. Q. (1991) Construction and evaluation of regenerable, fluoroimmunochemical-based fiber optic biosensor. Analyst 116, 117.CrossRefGoogle Scholar
  10. 10.
    Pohl, D. W. (1984) Scanning near-field optical microscopy, in Advances in Optical and Electron Microscopy (Sheppard, C. J. R. a. M., T., ed.), Academic, London.Google Scholar
  11. 11.
    Betzig, E. and Chichester, R. J. (1993) Single molecules observed by near-field scanning optical microscopy. Science 262(5138), 1422–1425.PubMedCrossRefGoogle Scholar
  12. 12.
    Zeisel, D., Deckert, V., Zenobi, R., and Vo-Dinh, T. (1998) Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chem. Phys. Lett. 283(5–6), 381–385.CrossRefGoogle Scholar
  13. 13.
    Deckert, V., Zeisel, D., Zenobi, R., and Vo-Dinh, T. (1998) Near-field surface enhanced Raman imaging of dye-labeled DNA with 100-nm resolution. Anal. Chem. 70(13), 2646–2650.CrossRefGoogle Scholar
  14. 14.
    Tan, W. H., Shi, Z. Y., and Kopelman, R. (1992) Development of submicron chemical fiber optic sensors. Anal. Chem. 64(23), 2985–2990.CrossRefGoogle Scholar
  15. 15.
    Tan, W. H., Shi, Z. Y., Smith, S., Birnbaum, D., and Kopelman, R. (1992) Submicrometer intracellular chemical optical fiber sensors. Science 258(5083), 778–781.PubMedCrossRefGoogle Scholar
  16. 16.
    Cullum, B. M., Griffin, G. D., Miller, G. H., and Vo-Dinh, T. (2000) Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal. Biochem. 277(1), 25–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Vo-Dinh, T. G. G. D., Alarie, J. P., Cullum, B. M., Sumpter, B., and Noid, D. (2000) Development of nanosensors and bioprobes. J. Nanoparticle Res. 2, 17.CrossRefGoogle Scholar
  18. 18.
    Vo-Dinh, T. and Cullum, B. (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J. Anal. Chem. 366(6–7), 540–551.PubMedCrossRefGoogle Scholar
  19. 19.
    Cullum, B. M. and Vo-Dinh, T. (2000) The development of optical nanosensors for biological measurements. Trends Biotechnol. 18(9), 388–393.PubMedCrossRefGoogle Scholar
  20. 20.
    Vo-Dinh, T., Cullum, B. M., and Stokes, D. L. (2001) Nanosensors and biochips: frontiers in biomolecular diagnostics. Sens. Actuators B 74, 2.CrossRefGoogle Scholar
  21. 21.
    Vo-Dinh, T., Alarie, J. P., Cullum, B. M., and Griffin, G. D. (2000) Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. Nat. Biotechnol. 18(7), 764–767.PubMedCrossRefGoogle Scholar
  22. 22.
    Vo-Dinh, T. (2003) Nanobiosensors: probing the sanctuary of individual cells. J. Cell. Biochem. Suppl. 39, 154–161.Google Scholar
  23. 23.
    Kasili, P. M., Cullum, B. M., Griffin, G. D., and Vo-Dinh, T. (2002) Nanosensor for in-vivo measurement of the carcinogen benzo [a] pyrene in a single cell. J. Nanosci. Nanotechnol. 6, 653.CrossRefGoogle Scholar
  24. 24.
    Kasili, P. M., Song, J. M., and Vo-Dinh, T. (2004) Optical sensor for the detection activity of caspace 9 in a single cell. J. Am. Chem. Soc., in press.Google Scholar
  25. 25.
    Vo-Dinh, T. (1998) Surface-enhanced Raman spectroscopy using metallic nanostructures. Trends Anal. Chem. 17, 557.CrossRefGoogle Scholar
  26. 26.
    Turner, D. R. (1984) US patent no. 4,469,554.Google Scholar
  27. 27.
    Hoffmann, P., Dutoit, B., and Salathe, R. P. (1995) Comparison of mechanically drawn and protection layer chemically etched optical fiber tips. Ultramicroscopy 61(1–4), 165–170.CrossRefGoogle Scholar
  28. 28.
    Lambelet, P., Sayah, A., Pfeffer, M., Philipona, C., and Marquis-Weible F. (1998) Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips. Appl. Opt. 37, 7289–7292PubMedCrossRefGoogle Scholar
  29. 29.
    Stockle, R., Fokas, C., Deckert, V., Zenobi, R., Sick, B., Hecht, B., and Wild, U. P. (1999) High-quality near-field optical probes by tube etching. Appl. Phys. Lett. 75(2), 160–162.CrossRefGoogle Scholar
  30. 30.
    Morena-Bondi, M., Mobley, J., Alarie, J. P., and Vo-Dinh, T. (2000) Antibody-based biosensor for breast cancer with ultrasonic regeneration. J. Biomed. Opt. 5(3), 350.CrossRefGoogle Scholar
  31. 31.
    Ricci, J. E., Gottlieb, R. A., and Green, D. R. (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J. Cell Biol. 160, 65–75.PubMedCrossRefGoogle Scholar
  32. 32.
    Hengartner, M. O. (2002) Apoptosis—DNA destroyers. Nature 412, 27–29.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Tuan Vo-Dinh
    • 1
  1. 1.Center for Advanced Biomedical Photonics, Life Sciences DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations