Studying 3D Subdomains of Proteins at the Nanometer Scale Using Fluorescence Spectroscopy

  • Pierre M. Viallet
  • Tuan Vo-Dinh
Part of the Methods in Molecular Biology™ book series (MIMB, volume 300)


Databases devoted to the crystal structure of proteins have dramatically increased in size during the last two decades. Moreover, X-ray and NMR technology studies have shown that proteins belonging to the same family generally share the same global 3D architecture. These results suggest that the need for experimental determination of protein structure will be reduced to those that are suspected to have sufficiently novel structures. Furthermore, NMR and other techniques have demonstrated that a protein in solution experiences constant random thermal motions that occur over large time scales, ranging from picoseconds to seconds and perhaps hours. Such changes may have important functional consequences, but identifying which changes are functionally relevant remains a difficult task even if this problem has been addressed both with experimental and computational methods. For that specific purpose, there is a need for methods allowing a fast and accurate monitoring of conformation changes (that occur at specific sub-domains of proteins. Fluorescence resonance energy transfer (FRET) is a suitable tool for monitoring conformational changes at the nanoscale level. This chapter describes the various FRET methods that are used for monitoring the 3D sub-domain conformation of proteins in solution, in single living cells and at the single molecular level.

Key Words

Fluorescence spectroscopy fluorescence resonance energy transfer fluorescence lifetime imaging measurements lifetime measurements energy transfer near-field scanning optical microscope protein subdomain 


  1. 1.
    Palmer, A. G. (1997) III. Probing molecular motion by NMR. Curr. Opin. Struct. Biol. 7, 732–737.PubMedCrossRefGoogle Scholar
  2. 2.
    Nicholson, L. K., Kay, L. E., Baldisseri, D. M., Arango, J., Young, P. E., Bax, A., and Torchia, D. A. (1992) Dynamics of methyl groups in proteins as studied by proton-detected 13C-NMR spectroscopy: application to the leucine residues of staphylococcal nuclease. Biochemistry 31, 5253–5263.PubMedCrossRefGoogle Scholar
  3. 3.
    Wand, A. J., Urbauer, J. L., McEvoy, R. P., and Bieber, R. J. (1996) Internal dynamics of human ubiquitin revealed by 13C-relaxation studies of randomly fractionally labeled protein. Biochemistry 35, 6116–6125.PubMedCrossRefGoogle Scholar
  4. 4.
    Le Master, D. M. (1999) NMR relaxation order parameter analysis of the dynamics of protein side chains. J. Am. Chem. Soc. 121, 1726–1742.CrossRefGoogle Scholar
  5. 5.
    Wang, C. W., Pawley, N. H., and Nicholson, L. K. (2001) The role of backbone motions in ligand binding to the c-Src SH3 domain. J. Mol. Biol. 313, 873–887.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee, A. L. and Wand, A. J. (2001) Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504.PubMedCrossRefGoogle Scholar
  7. 7.
    Wand, A. J. (2001) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat. Struct. Biol. 8, 926–931.PubMedCrossRefGoogle Scholar
  8. 8.
    Kay, L. E. (1998) Protein dynamics from NMR. Nat. Struct. Biol. 5, 513–517.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoogstraten, C. J., Wank, J. R., and Pardi, A. (2000) Active site dynamics in the lead-dependent ribozyme. Biochemistry 39, 9951–9958.PubMedCrossRefGoogle Scholar
  10. 10.
    Eisenmesser, E. Z., Bosco, D. A., Akke, M., and Kern, D. (2002) Enzyme dynamics during catalysis. Science 295, 1520–1523.PubMedCrossRefGoogle Scholar
  11. 11.
    Garcia-Mira, M. M., Sadqi, M., Fischer, N., Sanchez-Ruiz, J. M., and Munoz, V. (2002) Experimental identification of downhill protein folding. Science 298, 2191–2194.PubMedCrossRefGoogle Scholar
  12. 12.
    Dunham, T. D. and Farrens, D. L. (1999) Conformational changes in rhodopsin. J. Biol. Chem. 274, 1683–1690.PubMedCrossRefGoogle Scholar
  13. 13.
    Mayor, U., Johnson, C. M., Dagget, V., and Fersht, A. R. (2000) Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. USA 97, 13,518–13,522.PubMedCrossRefGoogle Scholar
  14. 14.
    Hubbel, W. L., Cafiso, D. S., and Altenbach, C. (2000) Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7, 735–739.CrossRefGoogle Scholar
  15. 15.
    Sanchez, R., Pieper, U., Melo, F., Eswar, N., Marti-Renom, M. A., Madhusudhan, M. S., Mirkovic, N., and Sali, A. (2000) Protein structure modeling for structural genomics. Nat. Struct. Biol. 7, 986–990.PubMedCrossRefGoogle Scholar
  16. 16.
    Föster, T., (1965) Delocalized excitation and excitation transfer, in Modern Quantum Chemistry, vol. 3 (Sinanoglu, O., ed.), Academic, New York, pp. 93–137.Google Scholar
  17. 17.
    Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.PubMedCrossRefGoogle Scholar
  18. 18.
    Lakowicz, J. R. (ed.). (1999) Principles of Fluorescence Spectroscopy, 2nd ed., Plenum, New York.Google Scholar
  19. 19.
    Jurgens, L., Arndt-Jovin, D., Pecht, I., and Jovin, T. M. (1996) Proximity relationships between the type I receptor for Fc epsilon (Fc epsilon RI) and the mast cell function associated antigen (MAFA) studied by donor photobleaching fluorescence resonance energy transfer microscopy. Eur. J. Immunol. 26, 84–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Clegg, R. M. (1996) Fluorescence resonance energy transfer, in Fluorescence Imaging Spectroscopy and Microscopy, vol. 137, Chemical Analysis Series (Wang, X. F. and Herman, B. eds.), Wiley, New York, pp. 179–251.Google Scholar
  21. 21.
    König, K. (1999) Multiphoton microscopy in life science. J. Microsc. 200, 83–104.CrossRefGoogle Scholar
  22. 22.
    Diaspro, A. and Robello, M. (2000) Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures. J. Photochem. Photobiol. 55, 1–8.CrossRefGoogle Scholar
  23. 23.
    Patterson, G. H. and Piston, D. W. (2000) Photobleaching in two-photon excitation microscopy. Biophys. J. 78, 2159–2162.PubMedCrossRefGoogle Scholar
  24. 24.
    Teruel, M. N. and Meyer, T. (2002) Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module. Science 295, 1910–1912.PubMedCrossRefGoogle Scholar
  25. 25.
    Salmon, J.-M., Vigo, J., and Viallet, P. (1988) Resolution of complex fluorescence spectra recorded on single unpigmented living cells using a computerized method. Cytometry 9, 25–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Vigo, J., Yassine, M., Viallet, P., and Salmon, J.-M. (1995) Multiwavelength fluorescence imaging: the prerequisite for the intracellular applications. J. Trace Microprobe Techniques 13, 199–207.Google Scholar
  27. 27.
    Gordon, G. W., Berry, G., Liang, X. H., Levine, B., and Herman, B. (1998) Quantitative Fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713.PubMedCrossRefGoogle Scholar
  28. 28.
    Bastiaens, P. I. H. and Squire, A. (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Emptage, N. J. (2001) Fluorescence imaging in living systems. Curr. Opin. Pharmacol. 1, 521–525.PubMedCrossRefGoogle Scholar
  30. 30.
    Wouters, F. S., Verveer, P. J., and Bastiaens P. I. H. (2001) Imaging biochemistry inside cells. Trends Cell Biol. 11, 203–211.PubMedCrossRefGoogle Scholar
  31. 31.
    Dong, C. Y., So, P. T., French, T., and Gratton, E. (1995) Fluorescence lifetime imaging by asynchronous pump-probe microscopy. Biophys. J. 69, 2234–2242.PubMedCrossRefGoogle Scholar
  32. 32.
    Schneckenburger, H., Gschwend, M. H., Sailer, R., Mock, H. P., and Strauss, W. S. (1998) Time-gated fluorescence microscopy in cellular and molecular biology. Cell Mol. Biol. 44, 795–805.PubMedGoogle Scholar
  33. 33.
    Schneckenburger, H., Gschwend, M. H., Sailer, R., Strauss, W. S., Lyttek, M., Stock, K., and Zipfl, P. (2000) Time-resolved in situ measurement of mitochondrial malfunction by energy transfer spectroscopy. J. Biomed. Opt. 5, 362–366.PubMedCrossRefGoogle Scholar
  34. 34.
    Despa, S., Vecer, J., Steels, P., and Ameloot, M. (2000) Fluorescence lifetime microscopy of the Na+ indicator sodium green in HeLa cells. Anal. Biochem. 281, 159–175.PubMedCrossRefGoogle Scholar
  35. 35.
    Jakobs, S., Subramaniam, V., Schönle, A., Jovin, T. M., and Hell, S. W. (2000) EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Lett. 479, 131–135.PubMedCrossRefGoogle Scholar
  36. 36.
    Squire, A., Verveer, P. J., and Bastiaens, P. I. H. (2000) Multiple frequency fluorescence lifetime imaging microscopy. J. Microsc. 197, 136–149.PubMedCrossRefGoogle Scholar
  37. 37.
    Tadrous, P. J. (2000) Methods for imaging the structure and function of living tissues and cells: fluorescence lifetime imaging. J. Pathol. 191, 229–234.PubMedCrossRefGoogle Scholar
  38. 38.
    Hanley, Q. S., Subramaniam, V., Arndt-Jovin, D. J., and Jovin, T. M. (2001) Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression. Cytometry 43, 248–260.PubMedCrossRefGoogle Scholar
  39. 39.
    Bancel, F., Salmon, J.-M., Vigo, J., and Viallet, P. M. (1992) Microspectrofluorometry as a tool for investigations of non calcium interactions of indo-1. Cell Calcium 13, 59–68.PubMedCrossRefGoogle Scholar
  40. 40.
    Vo-Dinh, T. (1978) Multicomponents analysis by synchronous luminescence spectroscopy. Anal. Chem. 50, 396–401.CrossRefGoogle Scholar
  41. 41.
    Stevenson, C. L., Johnson, R. W., and Vo-Dinh, T. (1994) Synchronous luminescence: a new detection technique for multiple fluorescent probes used for DNA sequencing. Biotechniques 16, 1104–1110.PubMedGoogle Scholar
  42. 42.
    Viallet, P. M., Vo-Dinh, T., Bunde, T., Ribou, A.-C., Vigo, J., and Salmon, J.-M. (1999) Fluorescent molecular reporter for the 3-D conformation of protein sub-domains: the Mag-indo 1 system. J. Fluoresc. 9, 153–161.Google Scholar
  43. 43.
    Viallet, P. M., Vo-Dinh, T., Ribou, A.-C., Vigo, J., and Salmon, J.-M. (2000) Native fluorescence and Mag-indo-1-protein interaction as tools for probing unfolding and refolding sequences of the bovine serum albumin subdomain in the presence of guanidine hydrochloride. J. Protein Chem. 19, 431–439.PubMedCrossRefGoogle Scholar
  44. 44.
    Prasher, D. C., Eckenrode, V. K., Ward, W. W., Predergast, F. G., and Cormier, M. J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233.PubMedCrossRefGoogle Scholar
  45. 45.
    Ludin, B. and Matus, A. (1998) GFP illuminates the cytoskeleton. Trends Cell Biol. 8, 72–77.PubMedCrossRefGoogle Scholar
  46. 46.
    Bajno, L. and Grinstein, S. (1999) Fluorescent proteins: powerful tools in phagocyte biology. J. Immun. Methods 232, 67–75.CrossRefGoogle Scholar
  47. 47.
    Chamberlain, C. and Hahn, K. M. (2000) Watching proteins in the wild: fluorescence methods to study dynamics in living cells. Traffic 1, 755–762.PubMedCrossRefGoogle Scholar
  48. 48.
    Latif, R. and Graves, P. (2000) Fluorescent probes: Looking backward and looking forward. Thyroid 10, 407–412.PubMedCrossRefGoogle Scholar
  49. 49.
    Sacchetti, A., Ciccocioppo, R., and Alberti, S. (2000) The molecular determinants of the efficiency of green fluorescent protein mutants. Histol. Histopathol. 15, 101–107.PubMedGoogle Scholar
  50. 50.
    Whitaker, M. (2000) Fluorescent tags of protein function in living cells. BioEssays 22, 180–187.PubMedCrossRefGoogle Scholar
  51. 51.
    Miyawaki, A. and Tsien, R. Y. (2000) Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol. 327, 472–500.PubMedCrossRefGoogle Scholar
  52. 52.
    Truong, K. and Ikura, M. (2001) The use of FRET imaging microscopy to detect protein-protein interactions and protein conformation changes in vivo. Curr. Opin. Struct. Biol. 11, 573–578.PubMedCrossRefGoogle Scholar
  53. 53.
    Xu, X., Gerald, A. L., Huang, B. C., Anderson, D. C., Payan, D. G., and Luo, Y. (1998) Detection of programmed cell death using fluorescence energy transfer. Nucleic Acid Res. 26, 2034, 2035.PubMedCrossRefGoogle Scholar
  54. 54.
    Mahajan, N. P., Harrison-Shostak, D. C., Michaux, J., and Henman, B. (1999) Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. Chem. Biol. 6, 401–409.PubMedCrossRefGoogle Scholar
  55. 55.
    Jones, J., Heim, R., Hare, E., Stack, J., and Pollok, B. A. (2000) Development and application of a GFP-FRET intracellular caspase assay for drug screening. J. Biomol. Screen. 5, 307–318.PubMedCrossRefGoogle Scholar
  56. 56.
    Luo, K. Q., Yu, V. C., Pu, Y., and Chang, D. C. (2001) Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. Biochem. Biophys. Res. Commun. 283, 1054–1060.PubMedCrossRefGoogle Scholar
  57. 57.
    Tawa, P., Tam, J., Cassady, R., Nicholson, D. W., and Xanthoudakis, S. (2001) Quantitative analysis of fluorescent caspase substrate cleavage in intact cells and identification of novel inhibitors of apoptosis. Cell Death Differ. 8, 30–37.PubMedCrossRefGoogle Scholar
  58. 58.
    Ng, T., Squire, A., Hansara, G., et al. (1999) Imaging protein kinase Cα activation in cells. Science 283, 2085–2089.PubMedCrossRefGoogle Scholar
  59. 59.
    Nagay, Y., Miyazaki, M., Aoki, R., Zama, T., Inouye, S., Hirose, K., Iino, M., and Hagiwara, M. (2000) A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat. Biotechnol. 18, 313–318.CrossRefGoogle Scholar
  60. 60.
    Zhang, J., Ma, Y., Taylor, S. S., and Tsien, R. Y. (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl. Acad. Sci. USA 98, 14,997–15,002.PubMedCrossRefGoogle Scholar
  61. 61.
    Ting, A. Y., Kain, K. H., Klemke, R. L., and Tsien, R. Y. (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl. Acad. Sci. USA 98, 15,002–15,008.Google Scholar
  62. 62.
    Llopis, J., Westin, S., Ricote, M., et al. (2000) Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in living cells and are required for transcription. Proc. Natl. Acad. Sci. USA 97, 4363–4368.PubMedCrossRefGoogle Scholar
  63. 63.
    Kenworthy, A. K., Petranova, N., and Edidin, M. (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655.PubMedGoogle Scholar
  64. 64.
    Sorkin, A., McLure, M., Huang, F., and Carter, R. (2000) Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10, 1395–1398.PubMedCrossRefGoogle Scholar
  65. 65.
    Janetopoulos, C., Jin, T., and Devreotes, P. (2001) Receptor-mediated activation of heteromeric G-proteins in living cells. Science 291, 2408–2411.PubMedCrossRefGoogle Scholar
  66. 66.
    Wilding, M., Török, K., and Whitaker, M. (1995) Activation-dependent and activation-independent localization of calmodulin to the mitotic apparatus during the first cell cycle of the Lytechnius pictus embryo. Zygote 3, 219–224.PubMedCrossRefGoogle Scholar
  67. 67.
    Wilding, M., Wright, E. M., Patel, R., Ellis-Davies, G., and Whitaker, M. (1996) Local perinuclear calcium signals associated with mitosis-entry in early sea urchin embryos. J. Cell Biol. 135, 191–199.PubMedCrossRefGoogle Scholar
  68. 68.
    Torok, K., Wilding, E. M., Groigno, L., Patel, R., and Whitaker, M. (1998) Imaging the spatial dynamics of calmodulin activation during mitosis. Curr. Biol. 8, 692–699.PubMedCrossRefGoogle Scholar
  69. 69.
    Whitaker, M. (2000) Fluorescent tags of protein function in living cells. BioEssays 22, 180–187.PubMedCrossRefGoogle Scholar
  70. 70.
    Zimprich, F., Török, K., and Bolsover, S. R. (1995) Nuclear calmodulin responds rapidly to calcium influx at the plasmalemma. Cell Calcium 17, 233–238.PubMedCrossRefGoogle Scholar
  71. 71.
    Falke, J. J. (2002) A moving story. Science 295, 1480, 1481.PubMedCrossRefGoogle Scholar
  72. 72.
    Baron, S., Poast, J., Rizzo, D., McFarland, E., and Kieff, E. (2000) Electroporation of antibodies, DNA, and other molecules into cells: a highly efficient method. J. Immunol. Methods 242, 115–126.PubMedCrossRefGoogle Scholar
  73. 73.
    Zelphati, O., Wang, Y., Kitada, S., Reed, J. C., Felgner, P. L., and Corbeil, J. (2001) Intracellular delivery of proteins with a new lipid-mediated delivery system. J. Biol. Chem. 276, 35,103–35,110.PubMedCrossRefGoogle Scholar
  74. 74.
    Boyle, D. L., Carman, P., and Takemoto, L. (2002) Translocation of macromolecules into whole rat lenses in culture. Mol. Vis. 8, 226–234.PubMedGoogle Scholar
  75. 75.
    Fortugno, P., Wall, N. R., Giodini, A., O’Connor, D. S., Plescia, J., Padgett, K. M., Tognin, S., Marchisio, P. C., and Altieri, D. C. (2002) Survivin exists in immunochemically distinct subcellular pools and is involved in spindle microtubule function. J. Cell Sci. 115, 575–585.PubMedGoogle Scholar
  76. 76.
    Anantharam, V., Kitazawa, M., Wagner, J., Kaul, S., and Kanthasamy, A. G. (2002) Caspase-3-dependent proteolytic cleavage of protein kinase C is essential for oxydative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. J. Neurosci. 22, 1738–1751.PubMedGoogle Scholar
  77. 77.
    Fernando, P., Kelly, J. F., Balazsi, K., Slack, R. S., and Megeney, L. A. (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc. Natl. Acad. Sci. USA 99, 11,025–11,030.PubMedCrossRefGoogle Scholar
  78. 78.
    Weiss, S. (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat. Struct. Biol. 7, 724–729.PubMedCrossRefGoogle Scholar
  79. 79.
    Ha, T., Ting, A. Y., Liang, J., Caldwell, W. B., Deniz, A. A., Chemla, D. S., Schultz, P. G., and Weiss, S. (1999) Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc. Natl. Acad. Sci. USA 96, 893–898.PubMedCrossRefGoogle Scholar
  80. 80.
    Deniz, A. A., Laurence, T. A., Beligere, G. S., Dahan, M., Martin, A. B., Chemla, D. S., Dawson, P. E., Schultz, P. G., and Weiss, S. (2000) Single-molecule protein detection protein folding: diffusion fluorescence energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc. Natl. Acad. Sci. USA 97, 5179–5184.PubMedCrossRefGoogle Scholar
  81. 81.
    Byassee, T. A., Chan, W. C. W., and Nie, S. (2000) Probing single molecules in single living cells. Anal. Chem. 72, 5606–5611.PubMedCrossRefGoogle Scholar
  82. 82.
    Schütz, G. H., Kada, G., Pastuhenko, V. P., and Schindler, H. (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901.PubMedCrossRefGoogle Scholar
  83. 83.
    Harms, G. S., Cognet, L., Lommerse, P. H. M., Blad, G. A., and Schmidt, T. (2001) Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys J. 80, 2396–2408.PubMedCrossRefGoogle Scholar
  84. 84.
    Harms, G. S., Cognet, L., Lommerse, P. H. M., et al. (2001) Single-molecule imaging of L-type Ca2+ channels in live cells. Biophys. J. 80, 2639–2646.CrossRefGoogle Scholar
  85. 85.
    Iino, R., Koyama, I., and Kusumi, A. (2001) Single-molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80, 2667–2677.PubMedCrossRefGoogle Scholar
  86. 86.
    Sase, I., Miyata, H., Ishiwata, S., and Kinosita, K. Jr. (1997) Axial rotation of sliding actin filaments revealed by single fluorescence imaging. Proc. Natl. Acad. Sci. USA 94, 5646–5650.PubMedCrossRefGoogle Scholar
  87. 87.
    Warshaw, D. M., Hayes, E., Gaffney, D., Lauzon, A. M., Wu, J., Kennedy, G., Tribus, K., Lowey, S., and Berger, C. (1998) Myosin conformational states determined by single fluorophore polarization. Proc. Natl. Acad. Sci. USA 95, 8034–8039.PubMedCrossRefGoogle Scholar
  88. 88.
    Adachi, K., Yasuda, R., Noji, H., Itoh, H., Yoshida, M., and Kinosita, K. Jr. (2000) Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc. Natl. Acad. Sci. USA 97, 7243–7247.PubMedCrossRefGoogle Scholar
  89. 89.
    Sako, Y. and Uyemura, T. (2002) Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Struct. Funct. 27, 357–365.PubMedCrossRefGoogle Scholar
  90. 90.
    Marchese-Ragona, S. P. and Haydon, P. G. (1997) Near-field scanning optical microscopy and near-field confocal optical spectroscopy: emerging techniques in biology, in Imaging Brain Structure and Function (Lester, E. D., Felder, C. C., and Lewis, E. N., eds.), Annals of the New York Academy of Sciences, New York, pp. 196–207.Google Scholar
  91. 91.
    Enderle, T., Ha, T., Ogletree, D. F., Chemla, D. S., Magowan, C., and Weiss, S. (1997) Membrane specific mapping and colocalization of malarial and host skeletal proteins in the plasmodium falciparum infected erythrocyte dual-color near field scanning optical microscopy. Proc. Natl. Acad. Sci. USA 94, 520–525.PubMedCrossRefGoogle Scholar
  92. 92.
    Kirsch, A. K., Subramaniam, V., Jenei, A., and Jovin, T. M. (1999) Fluorescence resonance energy transfer detected by scanning near-field microscopy. J. Microsc. 194, 448–454.PubMedCrossRefGoogle Scholar
  93. 93.
    Korchev, Y. E., Raval, M., Lab, M. J., Gorelik, J., Edwards, C. R., and Rayment-Klenerman, D. (2000) Hybrid scanning ion conductance and scanning near-field optical microscopy for the study of living cells. Biophys. J. 78, 2675–2679.PubMedCrossRefGoogle Scholar
  94. 94.
    Doyle, R. T., Szulzcewski, M. J., and Haydon, P. G. (2001) Extraction of near-field fluorescence from composite signals to provide high resolution images of glial cells. Biophys. J. 80, 2477–2482.PubMedCrossRefGoogle Scholar
  95. 95.
    Dickson, R. M., Cubitt, A. E., Tsien, R. Y., and Moerner, W. E. (1997) On/off blinking and switching behaviour of single molecules of green fluorescence protein. Nature 388, 355–358.PubMedCrossRefGoogle Scholar
  96. 96.
    Petermann, E. J. G., Brasselet, S., and Moerner, W. E. (1999) The fluorescence dynamics of single molecules of green fluorescence protein. J. Phys. Chem. A 103, 10,553–10,560.CrossRefGoogle Scholar
  97. 97.
    Dill, K. E. (1999) Polymer principles and protein folding. Protein Sci. 8, 1166–1180.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Pierre M. Viallet
    • 1
    • 2
  • Tuan Vo-Dinh
    • 3
  1. 1.Laboratory of Physicochemical Biology of Integrated SystemsUniversity of PerpignanPerpignanFrance
  2. 2.Advanced Biomedical Science and Technology GroupOak Ridge National LaboratoryOak Ridge
  3. 3.Center for Advanced Biomedical Photonics, Life Sciences DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations