Protein Nanotechnology

The New Frontier in Biosciences
  • Tuan Vo-Dinh
Part of the Methods in Molecular Biology™ book series (MIMB, volume 300)


The combination of nanotechnology and molecular biology has led to a new generation of nanoscale-based devices and methods for probing the cell machinery and elucidating intimate life processes occurring at the molecular level that were heretofore invisible to human inquiry. This chapter provides a brief overview of the field of nanotechnology and its applications to the study, design, and use of protein systems in biology and medicine.

Key Words

Nanotechnology protein nanosensor nanoprobe DNA RNA molecular motor 


  1. 1.
    Feynman, R. (1960) There’s plenty of room at the bottom: an invitation to enter a new field of physics. Eng. Sci. February Issue.Google Scholar
  2. 2.
    Drexler, E. K. (1986) Engines of Creation, Anchor Books, New York.Google Scholar
  3. 3.
    Cosman, M., Lightstone, F. C., Krishnan, V. V., Zeller, L., Prieto, M. C., Roe, D. C., and Balhorn, R. (2002) Screening mixtures of small molecules for binding to multiple sites on the surface of tetanus toxin C fragment by bioaffinity NMR. Chem. Res. Toxicol. 15, 1218–1228.PubMedCrossRefGoogle Scholar
  4. 4.
    Tuzun, R. E., Noid, D. W., and Sumpter, B. G. (1995) The dynamics of molecular bearings. Nanotechnology 6, 64–74.CrossRefGoogle Scholar
  5. 5.
    Noid, D. W., Tuzun, R. E., and Sumpter, B. G. (1997) On the importance of quantum mechanics for nanotechnology. Nanotechnology 8, 119–125.CrossRefGoogle Scholar
  6. 6.
    Vo-Dinh, T. (ed.) (2003) Biomedical Photonics Handbook, CRC Press, Boca Raton, FL.Google Scholar
  7. 7.
    Vo-Dinh, T. (1998) Surface-enhanced Raman spectroscopy using metallic nanostructures. Trends Anal. Chem. 17, 557–582.CrossRefGoogle Scholar
  8. 8.
    Isola, N., Stokes, D. L., and Vo-Dinh, T. (1998) Surface-enhanced Raman gene probes for HIV detection. Anal. Chem. 70, 1352–1356.PubMedCrossRefGoogle Scholar
  9. 9.
    Vo-Dinh, T., Stokes, D. L., Griffin, G. D., Volkan, M., Kim, U. J., and Simon, M. I. (1999) Surface-enhanced Raman scattering (SERS) method and instrumentation for genomics and biomedical analysis. J. Raman Spectrosc. 30, 785–793.CrossRefGoogle Scholar
  10. 10.
    Vo-Dinh, T., Alarie, J. P., Cullum, B., and Griffin, G. D. (2000) Antibody-based nanoprobe for measurements in a single cell. Nat. Biotechnol. 18, 764–767.PubMedCrossRefGoogle Scholar
  11. 11.
    Vo-Dinh, T. (2003) Nanosensors: probing the sanctuary of individual living cells. J. Cell. Biochem. 39(Suppl.), 154–161.Google Scholar
  12. 12.
    Vo-Dinh, T., Cullum, B. M., and Stokes, D. L. (2001) Nanosensors and biochips: frontiers in biomolecular diagnostics. Sens. Actuators B Chem. 74(1–3), 2–11.CrossRefGoogle Scholar
  13. 13.
    Askin, A., Dziedzic, J. M., and Yamane, T. (1987) Optical trapping and manipulation of single cells using infrared laser beam. Nature 330, 769–771.CrossRefGoogle Scholar
  14. 14.
    Kojima, H., Muto, E., Higuchi, H., and Yanagido, T. (1997) Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73(4), 2012–2022.PubMedCrossRefGoogle Scholar
  15. 15.
    Luo, Z. P., Bolander, M. E., and An, K. N. (1997) A method for determination of stiffness of collagen molecules. Biochem. Biophys. Res. Commun. 232(1), 251–254.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Tuan Vo-Dinh
    • 1
  1. 1.Center for Advanced Biomedical Photonics, Life Sciences DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations