Use of the Morganella morganii phoC Gene as Reporter in Bacterial and Yeast Hosts

  • Stefania Cresti
  • Cesira L. Galeotti
  • Serena Schippa
  • Gian Maria Rossolini
  • Maria C. Thaller
Part of the Methods in Biotechnology book series (MIBT, volume 18)


In this chapter are described the applications of the Morganella morganii phoC gene, encoding a molecular class A nonspecific phosphatase, as a reporter both in prokaryotic (Escherichia coli) and in eukaryotic (Saccharomyces cerevisiae) systems. The activity of PhoC can be detected by means of simple, sensitive, and relatively inexpensive tests in either qualitative (histo-chemical) or quantitative (liquid) assays. The methods are suitable to monitor gene expression and to determine transcriptional activity and the inducibility of a promoter or other regulatory elements. The intrinsic properties of phoC could be also exploited for studies on secretion, or in applications where the host cell should be recovered still viable after the reporter assay for further analysis. Indeed, in S. cerevisiae, the PhoC protein is secreted very efficiently into the culture medium and its activity can be easily assessed without interfering with the growth conditions required by the experimental approach of choice.

Key Words

Saccharomyces cerevisiae Escherichia coli yeast bacteria reporter gene phosphatase eukaryotic microorganism prokaryote phosphatase assay 


  1. 1.
    An, G., Hidaka, K., and Simonovitch, L. (1982) Expression of bacterial beta-galac-tosidase in animal cells. Mol. Cell Biol. 2,1628–1632.PubMedGoogle Scholar
  2. 2.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.PubMedCrossRefGoogle Scholar
  3. 3.
    Gorman, C. M., Moffat, L. E, and Howard, B. H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell Biol. 2, 1044–1051.PubMedGoogle Scholar
  4. 4.
    Jefferson, R. A., Burgess, S. M., and Hirsh, D. (1986) beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83, 8447–8451.PubMedCrossRefGoogle Scholar
  5. 5.
    Olsson, O., Koncz, C., and Szalay, A. A. (1988) The use of the luxA gene of the bacterial luciferase operon as a reporter gene. Mol. Gen. Genet. 215, 1–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Ow, D. W., Wood, K. W., De Luca, M., De Wet, J. R., Helinski, D. R., and Owell, S. H. (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234, 856–859.PubMedCrossRefGoogle Scholar
  7. 7.
    Wildt, S. and Deuschle, U. (1999) cob A, a red fluorescent transcriptional reporter for Escherichia coli, yeast, and mammalian cells. Nat. Biotechnol. 17,1175–1178.PubMedCrossRefGoogle Scholar
  8. 8.
    Lapage, S. P., Efstratiou, A., and Hill, L. R. (1973) The ortho-nitrophenol (ONPG) test and acid from lactose in Gram-negative genera. J. Clin. Pathol. 26, 821–825.PubMedCrossRefGoogle Scholar
  9. 9.
    Horwitz, J. P., Chua, J., Curby, R. J., et al. (1964) Substrates for cytochemical demonstration of enzyme activity. I. Some substituted 3-indolyl-beta-D-glycopyra-nosides. J. Med. Chem 7, 574–575.PubMedCrossRefGoogle Scholar
  10. 10.
    Mount, R. C., Jordan, B. E., and Hadfield, C. (1996) Reporter gene systems for assaying gene expression in yeast. Methods Mol. Biol. 53, 239–248.PubMedGoogle Scholar
  11. 11.
    Alipour, H., Eriksson, P., Norbeck, J., and Blomberg, A. (1999) Quantitative aspects of the use of bacterial chloramphenicol acetyltransferase as a reporter system in the yeast Saccharomyces cerevisiae. Anal. Biochem. 270,153–158.PubMedCrossRefGoogle Scholar
  12. 12.
    Thaller, M. C., Berlutti, F., Schippa, S., Lombardi, G., and Rossolini, G. M. (1994) Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology 140, 1341–1350.PubMedCrossRefGoogle Scholar
  13. 14.
    Guarente, L., Yocum, R. R., and Gifford, P. (1982) A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. Natl. Acad. Sci. USA 79, 7410–7414.PubMedCrossRefGoogle Scholar
  14. 15.
    Cherry, J. M., Adler, C., Ball, C., et al. (1998) SGD: Saccharomyces Genome Database. Nucleic Acids Res. 26, 73–79.PubMedCrossRefGoogle Scholar
  15. 16.
    Studier, E W. and Moffatt, B. A. (1986) Use of Bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189,113–130.PubMedCrossRefGoogle Scholar
  16. 17.
    Baldari, C., Murray, J. A., Ghiara, P., Cesareni, G., and Galeotti, C. L. (1987) A novel leader peptide which allows efficient secretion of a fragment of human inter-leukin 1 beta in Saccharomyces cerevisiae. EMBO J. 6, 229–234.PubMedGoogle Scholar
  17. 18.
    Sambrook, J. and Russell, D. W. (eds.) (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  18. 19.
    Gietz, R. D. and Woods, R. A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method, in Guide to Yeast Genetics & Molecular Cell Biology (Christine Guthrie, G. R. E, ed), Academic-Hardback, London, pp. 87–96.CrossRefGoogle Scholar
  19. 20.
    Bolivar, E and Backman, K. (1979) Plasmids of Escherichia coli as cloning vectors. Methods Enzymol. 68, 245–267.PubMedCrossRefGoogle Scholar
  20. 21.
    Boyer, H. W. and Roulland-Dussoix, D. (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41,459–472.PubMedCrossRefGoogle Scholar
  21. 22.
    Cesareni, G. and Murray, J. A. (1987) Plasmid vectors carrying the replication origin of philamentous single-stranded phages. Genet. Eng. 9, 135–154.Google Scholar
  22. 23.
    Riccio, M. L., Rossolini, G. M., Lombardi, G., Chiesurin, A., and Satta, G. (1997) Expression cloning of different bacterial phosphatase-encoding genes by histo-chemical screening of genomic libraries onto an indicator medium containing phe-nolphthalein diphosphate and methyl green. J. Appl. Microbiol. 82, 177–185.PubMedGoogle Scholar
  23. 24.
    Thaller, M. C., Berlutti, F., Schippa, S., Iori, P., Passariello, C., and Rossolini, G. M. (1995) Heterogeneous pattern of acid phosphatases containing low-molecular-mass polypeptides in members of the family Enterobacteriaceae. Int. J. Syst. Bact. 45,255–261.CrossRefGoogle Scholar
  24. 25.
    Neumann, H. and van Vreedendaal, M. (1967) An improved alkaline phosphatase determination with p-nitrophenyl phosphate. Clin. Chim. Acta 17, 183–187.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Stefania Cresti
    • 1
  • Cesira L. Galeotti
    • 2
  • Serena Schippa
    • 3
  • Gian Maria Rossolini
    • 3
  • Maria C. Thaller
    • 4
  1. 1.Dipartimento di Biologia MolecolareUniversità degli Studi di SienaItaly
  2. 2.I.R.I.S. Chiron s.r.l.SienaItaly
  3. 3.Dipartimento di Scienze e di Sanità PubblicaUniversità La SapienzaRomeItaly
  4. 4.Dipartimento di BiologiaUniversità di Roma Tor VergataRomaItaly

Personalised recommendations