Glucose Dehydrogenase for the Regeneration of NADPH and NADH

  • Andrea Weckbecker
  • Werner Hummel
Part of the Methods in Biotechnology book series (MIBT, volume 17)

Abstract

Glucose dehydrogenases (GDHs) occur in several organisms such as Bacillus megaterium and Bacillus subtilis. They accept both NAD+and NADP+as cofactor and can be used for the regeneration of NADH and NADPH. In order to demonstrate their applicability we coupled an NADP+-dependent, (R)-specific alcohol dehydrogenase (ADH) from Lactobacillus kefir with the glucose dehydrogenase from B. subtilis. The ADH reduces prochiral ketones stereoselectively to chiral alcohols. The reduction requires NADPH, which was regenerated by the glucose dehydrogenase. Glucose dehydrogenase from B. subtilis (EC 1.1.1.47) is a tetramer with a molecular weight of 126,000. The enzyme shows a pH optimum at 8.0 and a broad temperature optimum at 45-50°C. We investigated the conversion of acetophenone in a cell-free system with purified ADH and GDH. Furthermore, we constructed two plasmids containing the genes encoding ADH and GDH by inserting them one after the other. These two plasmids differ from each other in the order of the genes. Because of the low solubility of the compounds, we examined the reaction in a water/organic solvent two-phase system.

Key Words

Glucose dehydrogenase Bacillus subtilis alcohol dehydrogenase Lactobacilluskefir coexpression whole-cell biotransformation two-phase system 

References

  1. 1.
    Pauly, H. E. and Pfleiderer, G. (1975) D-glucose dehydrogenase from Bacillus megaterium M 1286: purification, properties and structure. Hoppe Seylers Z Physiol. Chem. 356, 1613–1623.PubMedCrossRefGoogle Scholar
  2. 2.
    Jany, K. D., Ulmer, W., Froschle, M., and Pfleiderer, G. (1984) Complete amino acid sequence of glucose dehydrogenase from Bacillus megaterium. FEBS Lett. 165, 6–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Heilmann, H. J., Magert, H. J., and Gassen, H. G. (1988) Identification and isolation of glucose dehydrogenase genes of Bacillus megaterium M 1286 and their expression in Escherichia coli. Eur. J. Biochem. 174, 485–490.Google Scholar
  4. 4.
    Mitamura, T., Urabe, I., and Okada, H. (1989) Enzymatic properties of isozymes and variants of glucose dehydrogenase from Bacillus megaterium. Eur. J. Biochem. 186, 389–393.PubMedCrossRefGoogle Scholar
  5. 5.
    Fujita, Y., Ramaley, R., and Freese, E. (1977) Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis. J. Bacteriol. 132, 282–293.PubMedGoogle Scholar
  6. 6.
    Lampel, K. A., Uratani, B., Chaudhry, G. R., Ramaley, R. R, and Rudikoff, S. (1986) Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene. J. Bacteriol. 166, 238–243.PubMedGoogle Scholar
  7. 7.
    Hilt, W., Pfleiderer, G., and Fortnagel, P. (1991) Glucose dehydrogenase from Bacillus subtilis expressed in Escherichia coli. I: Purification, characterization and comparison with glucose dehydrogenase from Bacillus megaterium. Biochim. Biophys. Acta 1076, 298–304.PubMedCrossRefGoogle Scholar
  8. 8.
    Adachi, O., Kazunobu, M., Shinagawa, E., and Ameyama, M. (1980) Crystallization and characterization of NADP-dependent D-glucose dehydrogenase from Gluconobacter suboxydans. Agric. Biol. Chem. 44, 301–308.Google Scholar
  9. 9.
    Bonete, M. J., Pire, C., Llorca, F. L, and Camacho, M. L. (1996) Glucose dehydrogenase from the halophilic archaeon Haloferax mediterranei: enzyme purification, characterisation and N-terminal sequence. FEBS Lett. 383, 227–229.PubMedCrossRefGoogle Scholar
  10. 10.
    Smith, L. D., Budgen, N., Bungard, S. J., Danson, M. J., and Hough, D. W. (1989) Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Biochem. J. 261, 973–977.PubMedGoogle Scholar
  11. 11.
    Bright, J. R., Byrom, D., Danson, M. J., Hough, D. W., and Towner, P. (1993) Cloning, sequencing and expression of the gene encoding glucose dehydrogenase from the thermophilic archaeon Thermoplasma acidophilum. Eur. J. Biochem. 211, 549–554.PubMedCrossRefGoogle Scholar
  12. 12.
    Giardina, P., de Biasi, M. G., de Rosa, M., Gambacorta, A., and Buonocore, V. (1986) Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem. J. 239, 517–522.PubMedGoogle Scholar
  13. 13.
    Hummel, W. (1999) Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments. Trends Biotechnol. 17, 487–492.PubMedCrossRefGoogle Scholar
  14. 14.
    Hanson, R. L., Schwinden, M. D., Banerjee, A., Brzozowski, D. B., Chen, B. C., Patel, B. P., et al. (1999) Enzymatic synthesis of L-6-hydroxynorleucine. Bioorg. Med. Chem. 7, 2247–2252.PubMedCrossRefGoogle Scholar
  15. 15.
    Lin, S.-S., Miyawaki, O., and Nakamura, K. (1999) Continuous production of Lcarnitine with NADH regeneration by a nanofiltration membrane reactor with coimmobilized L-carnitine dehydrogenase and glucose dehydrogenase. J. Biosci. Bioeng. 87, 361–364.PubMedCrossRefGoogle Scholar
  16. 16.
    Kataoka, M., Yamamoto, K., Kawabata, H., Wada, M., Kita, K., Yanase, H., and Shimizu, S. (1999) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 51, 486–490.PubMedCrossRefGoogle Scholar
  17. 17.
    Eguchi, T., Kuge, Y., Inoue, K., Yoshikawa, N., Mochida, K., and Uwajima, T. (1992) NADPH regeneration by glucose dehydrogenase from Gluconobacter scleroides for l-leucovorin synthesis. Biosci. Biotechnol. Biochem. 56, 701–703.PubMedCrossRefGoogle Scholar
  18. 18.
    Hummel, W. (1990) Enzyme-catalyzed synthesis of optically pure R(+)phenylethanol. Biotechnol. Lett. 12, 403–408.CrossRefGoogle Scholar
  19. 19.
    Wong, C.-H. and Whitesides, G. M. (1981) Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose 6-phosphate and the glucose-6phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc. 103, 4890–4899.CrossRefGoogle Scholar
  20. 20.
    Hummel, W., Boermann, F., and Kula, M.-R. (1989) Purification and characterization of an acetoin dehydrogenase from Lactobacillus kefir suitable for the production of (+)-acetoin. Biocatalysis 2, 293–308.CrossRefGoogle Scholar
  21. 21.
    Bradshaw, C. W., Hummel, W., and Wong, C.-H. (1992) Lactobacillus kefir alcohol dehydrogenase: a useful catalyst for synthesis. J. Org. Chem. 57, 1532–1536.CrossRefGoogle Scholar
  22. 22.
    Hummel, W. and Riebel, B. (1996) Chiral alcohols by enantioselective enzymatic oxidation. Enzyme Engineering 13, 713–716.Google Scholar
  23. 23.
    Kruse, W., Hummel, W., and Kragl, U. (1996) Alcohol-dehydrogenase-catalyzed production of chiral hydrophobic alcohols. A new approach leading to a nearly waste-free process. Recueil des Travaux Chimiques des Pays-Bas 115, 239–243.CrossRefGoogle Scholar
  24. 24.
    Wilms, B., Wiese, A., Syldatk, C., Mattes, R., and Altenbuchner, J. (2001) Development of an Escherichia coli whole cell biocatalyst for the production of Lamino acids. J. Biotechnol. 86, 19–30.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Andrea Weckbecker
    • 1
  • Werner Hummel
    • 2
  1. 1.Institute of Molecular Enzyme TechnologyHeinrich-Heine-University Düsseldorf, Research Centre JülichGermany
  2. 2.Institute of Molecular Enzyme TechnologyHeinrich- Heine-University Düsseldorf, Research Centre JülichGermany

Personalised recommendations