Analysis of DNA Repair Using Transfection-Based Host Cell Reactivation

  • Jennifer M. Johnson
  • Jean J. Latimer
Part of the Methods in Molecular Biology™ book series (MIMB, volume 291)

Abstract

Host cell reactivation (HCR) is a transfection-based assay in which intact cells repair damage localized to exogenous DNA. This chapter provides instructions for the application of this technique using UV irradiation as a source of damage to a luciferase reporter plasmid. Through measurement of the activity of a reporter enzyme, the amount of damaged plasmid that a cell can “reactivate” or repair and express can be quantitated. Different DNA repair pathways can be analyzed by this technique by damaging the reporter plasmid in different ways. Because it involves repair of a transcriptionally active gene, when applied to UV damage the HCR assay measures the capacity of the host cells to perform transcription-coupled repair (TCR), a subset of the overall nucleotide excision repair pathway that specifically targets transcribed gene sequences.

Key Words

DNA damage host cell reactivation (HCR) transcription-coupled repair (TCR) global genomic repair (GGR) nucleotide excision repair (NER) transfection luciferase UV irradiation thymine dimers 6-4 photoproducts 

References

  1. 1.
    Rupert, C. and Harm, W. (1966) Reactivation after photobiological damage. Adv. Radiat. Biol. 2, 1–81.Google Scholar
  2. 2.
    Protic-Sabljic, M. and Kraemer, K. H. (1985) One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells. Proc. Natl. Acad. Sci. USA 82, 6622–6626.PubMedCrossRefGoogle Scholar
  3. 3.
    Athas, W. F., Hedayati, M. A., Matanoski, G. M., Farmer, E. R., and Grossman, L. (1991) Development and field-test validation of an assay for DNA repair in circulating human lymphocytes. Cancer Res. 51, 5786–5793.PubMedGoogle Scholar
  4. 4.
    Bohr, V. A., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C. (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369.PubMedCrossRefGoogle Scholar
  5. 5.
    Matijasevic, Z., Precopio, M. L., Snyder, J. E., and Ludlum, D. B. (2001) Repair of sulfur mustard-induced DNA damage in mammalian cells measured by a host cell reactivation assay. Carcinogenesis 22, 661–664.PubMedCrossRefGoogle Scholar
  6. 6.
    Berwick, M. and Veneis, P. (2000) Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J. Natl. Cancer Inst. 92, 847–897.CrossRefGoogle Scholar
  7. 7.
    Invitrogen Life Technologies Lipofectamine 2000 CD Reagent, pp. 1–2; available at http://www.invitrogen.com.
  8. 8.
    Promega Luciferase Assay System Instructions, Technical Bulletin No. 281, pp. 1–13; available at http://www.promega.com.
  9. 9.
    BCA Protein Assay Reagent Kit 23227 Instructions, pp. 1–8; available at http://www.piercenet.com.
  10. 10.
    Miller, J. H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 352–355.Google Scholar
  11. 11.
    Rainbow, A. (1975) Host-cell reactivation of irradiated human adenovirus. Basic Life Sci. 5B, 753–754.PubMedGoogle Scholar
  12. 12.
    Slebos, R. J. and Taylor, J. A. (2001) A novel host cell reactivation assay to assess homologous recombination capacity in human cancer cell lines. Biochem. Biophys. Res. Commun. 281, 212–219.PubMedCrossRefGoogle Scholar
  13. 13.
    Hansson, J. and Wood, R. D. (1989) Repair synthesis by human cell extracts in DNA damaged by cis-and trans-diamminedichloroplatinum(II). Nucleic Acids Res. 17,8073–8091.PubMedCrossRefGoogle Scholar
  14. 14.
    Yen, L., Woo, A., Christopoulopoulos, G., et al. (1995) Enhanced host cell reactivation capacity and expression of DNA repair genes in human breast cancer cells resistant to bifunctional alkylating agents. Mutat. Res. 337, 179–189.PubMedGoogle Scholar
  15. 15.
    Dean, S. W., Sykes, H. R., and Lehmann, A. R. (1988) Inactivation by nitrogen mustard of plasmids introduced into normal and Fanconi’s anaemia cells. Mutat. Res. 194,57–63.PubMedGoogle Scholar
  16. 16.
    Sun, Y. and Moses, R. E. (1991) Reactivation of psoralen-reacted plasmid in Fanconi anemia, xeroderma pigmentosum, and normal human fibroblast cells. Somat. Cell Mol. Genet. 17, 229–238.PubMedCrossRefGoogle Scholar
  17. 17.
    Stevnsner, T., Frandsen, H., and Autrup, H. (1995) Repair of DNA lesions induced by ultraviolet irradiation and aromatic amines in normal and repair-deficient human lymphoblastoid cell lines. Carcinogenesis 16, 2855–2858.PubMedCrossRefGoogle Scholar
  18. 18.
    Tanooka, H. and Tada, M. (1975) Reparable lethal DNA damage produced by enzyme-activated 4-hydroxyaminoquinoline 1-oxide. Chem. Biol. Interact. 10, 11–18.PubMedCrossRefGoogle Scholar
  19. 19.
    Cheng, L., Eicher, S. A., Guo, Z., Hong, W. K., Spitz, M. R., and Wei, Q. (1998) Reduced DNA repair capacity in head and neck cancer patients. Cancer Epidemiol. Biomarkers Prev. 7, 465–468.PubMedGoogle Scholar
  20. 20.
    Matsijasevic, Z., Precopio, M. L., Snyder, J. E., and Ludlum, D. B. (2001) Repair of sulfur mustard-induced DNA damage in mammalian cells measured by a host cell reactivation assay. Carcinogenesis 22, 661–664.CrossRefGoogle Scholar
  21. 21.
    Kuraoka, I., Bender, C., Romieu, A., Cadet, J., Wood, R. D., and Lindahl, T. (2000) Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision repair pathway in human cells. Proc. Natl. Acad. Sci. USA. 97, 3832–3837.PubMedCrossRefGoogle Scholar
  22. 22.
    Iakoucheva, L. M., Walker, R. K., van Houten, B., and Ackerman, E. J. (2002) Equilibrium and stop-slow kinetic studies of fluorescently labeled DNA substrates with DNA repair proteins XPA and replication protein A. Biochemistry 41, 131–143.PubMedCrossRefGoogle Scholar
  23. 23.
    Day, R. S. III and Ziolkowski, C. H. (1979) Human brain tumour cell strains with deficient host-cell reactivation of N-methyl-N−-nitro-N-nitrosoguanidine-damaged adenovirus 5. Nature 279, 797–799.PubMedCrossRefGoogle Scholar
  24. 24.
    Maynard, K., Parsons, P. G., Cerny, T., and Margison, G. P. (1989) Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and herpes simplex virus type 1 in human melanoma cell lines. Cancer Res. 49, 4813–4817.PubMedGoogle Scholar
  25. 25.
    L’Herault, P. and Chung, Y. S. (1982) Host cell reactivation of ozone-treated T3 bacteriophage by different strains of Escherichia coli. Experentia 38, 1491–1492.CrossRefGoogle Scholar
  26. 26.
    Diem, C. and Runger, T. M. (1997) Processing of three different types of DNA damage in cell lines of a cutaneous squamous cell carcinoma progression model. Carcinogenesis 18, 657–662.PubMedCrossRefGoogle Scholar
  27. 27.
    Protic-Sabljic, M. and Kraemer, K. H. (1986) Host cell reactivation by human cells of DNA expression vectors damaged by ultraviolet radiation or by acid/heat treatment. Carcinogenesis 7, 1765–1770.PubMedCrossRefGoogle Scholar
  28. 28.
    Matsumoto, Y. (1999) Base excision repair assay using Xenopus laevis oocyte extracts, in Methods in Molecular Biology, vol. 113, DNA Repair Protocols: Eukaryotic Systems (Henderson, D. S., ed.), Humana, Totowa, NJ, pp. 289–300.CrossRefGoogle Scholar
  29. 29.
    Runger, T. M., Emmert, S., Schadendorf, D., Diem, C., Epe, B., and Hellfritsch, D. (2000) Alterations of DNA repair in melanoma cell lines resistant to cisplatin, fotemustine, or etoposide. J. Invest. Dermatol. 114, 34–39.PubMedCrossRefGoogle Scholar
  30. 30.
    Perlow, R. A., Schinecker, T. M., Kim, S. J., Geacintov, N. E., and Scicchitano, D. A. (2003) Construction and purification of site-specifically modified DNA templates for transcription assays. Nucleic Acids. Res. 31, e40.PubMedCrossRefGoogle Scholar
  31. 31.
    Latimer, J. J., Hultner, M. L., Cleaver, J. E., and Pedersen, R. A. (1996) Elevated DNA excision repair capacity in the extraembryonic mesoderm of the mid-gestation mouse embryo. Exp. Cell Res. 228, 19–28.PubMedCrossRefGoogle Scholar
  32. 32.
    Cheng, L., Guan, Y., Li, L., et al. (1999) Expression in normal human tissues of five nucleotide excision repair genes measured simultaneously by multiplex reverse transcription-polymerase chain reaction. Cancer Epidemiol. Biomarkers Prev. 8, 801–807.PubMedGoogle Scholar
  33. 33.
    Latimer, J. J., Nazir, T., Flowers, L. C, et al. (2003) Unique tissue-specific level of DNA nucleotide excision repair in primary human mammary epithelial cultures. Exp. Cell Res. 291, 111–121.PubMedCrossRefGoogle Scholar
  34. 34.
    Ford, J. M., Baron, E. L., and Hanawalt, P. C. (1998) Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation. Cancer Res. 58, 599–603.PubMedGoogle Scholar
  35. 35.
    Bowman, K. K., Sicard, D. M., Ford, J. M., and Hanawalt, P. C. (2000) Reduced global genomic repair of ultraviolet light-induced cyclobutane pyrimidine dimers in simian virus 40-transformed human cells. Mol. Carcinogen. 29, 17–24.CrossRefGoogle Scholar
  36. 36.
    Fututa, T., Ueda, T., Aune, G., Sarasin, A., Kraemer, K. H., and Pommier, Y. (2002) Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 65, 4899–4902.Google Scholar
  37. 37.
    Steier, H. and Cleaver, J. E. (1969) Exposure chamber for quantitative ultraviolet photo-biology. Lab Prac. 18, 1295.Google Scholar
  38. 38.
    Promega Transfection Guide, pp. 1–56; available at http://www.promega.com.

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Jennifer M. Johnson
    • 1
  • Jean J. Latimer
    • 2
  1. 1.Department of Molecular Genetics and BiochemistryUniversity of Pittsburgh School of MedicinePittsburgh
  2. 2.Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburgh

Personalised recommendations