Advertisement

3-Nitropropionic Acid Model of Metabolic Stress

Assessment by Magnetic Resonance Imaging
  • Toby John Roberts
Part of the Methods in Molecular Medicine book series (MIMM, volume 104)

Abstract

3-Nitropropionic acid (3-NPA) is a potent mitochondrial inhibitor that can be administered systemically to create a progressive and localized striatal neurodegeneration mimicking many of the pathological features of Huntington’s disease and other forms of metabolic compromise such as cerebral ischemia, carbon monoxide poisoning, and hypoglycemia. Here we describe a method to produce 3-NPA-induced lesions using the systemically administered toxin. We also describe magnetic resonance imaging methods to allow assessment of lesion severity over time within the same animal.

Key Words

3-Nitropropionic acid Huntington’s disease oxidative stress magnetic resonance imaging striatum caudate putamen excitotoxicity neurodegeneration energy metabolism succinate dehydrogenase complex II mitochondria dopamine glutamate blood-brain barrier 

References

  1. 1.
    Hamilton, B. F. and Gould, D. H. (1987) Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: a type of hypoxic (energy deficient) brain damage. Acta Neuropathol. 72, 286–297.PubMedCrossRefGoogle Scholar
  2. 2.
    Beal, M. F., Brouillet, E., Jenkins, B. G., et al. (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13, 4181–4192.PubMedGoogle Scholar
  3. 3.
    Brouillet, E., Guyot, M. C, Mittoux, V., et al. (1998) Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat. J. Neurochem. 70, 794–805.PubMedCrossRefGoogle Scholar
  4. 4.
    The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 817–818.CrossRefGoogle Scholar
  5. 5.
    Gourfinkel-An I., Vila, M., Faucheux, B., et al. (2002) Metabolic changes in the basal ganglia of patients with Huntington’s disease: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J. Neurochem. 80, 466–476.PubMedCrossRefGoogle Scholar
  6. 6.
    Jenkins, B. G., Koroshetz, W. J., Beal, M. F., Rosen, B. R. (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43, 2689–2695.PubMedGoogle Scholar
  7. 7.
    Beal, M. F. (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 23, 298–304.PubMedCrossRefGoogle Scholar
  8. 8.
    Behrens, M. I., Koh, J., Canzoniero, L. M., Sensi, S. L., Csernansky, C. A., and Choi, D. W. (1996) 3-Nitropropionic acid induces apoptosis in cultured striatal and cortical neurons. Neuroreport 6, 545–548.CrossRefGoogle Scholar
  9. 9.
    Pang, Z. and Geddes, J. W. (1997) Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J. Neurosci. 17, 3064–3073.PubMedGoogle Scholar
  10. 10.
    Brouillet, E., Jenkins, B. G., Hyman, B. T., et al. (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 60, 356–359.PubMedCrossRefGoogle Scholar
  11. 11.
    Reynolds, G. P., Pearson, S. J., Heathfield, K. W. (1990) Dementia in Huntington’s disease is associated with neurochemical deficits in the caudate nucleus, not the cerebral cortex. Neurosci. Lett. 113, 95–100.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferrante, R. J., Kowall, N. W., Beal, M. F., Richardson, E. P. Jr., Bird, E. D., and Martin, J. B. (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230, 561–563.PubMedCrossRefGoogle Scholar
  13. 13.
    Calabresi, P., Centonze, D., Pisani, A., et al. (1998) Striatal spiny neurons and cholinergic interneurons express differential ionotropic glutamatergic responses and vulnerability: implications for ischemia and Huntington’s disease. Ann. Neurol. 43, 586–597.PubMedCrossRefGoogle Scholar
  14. 14.
    Alexi, T., Hughes, P. E., Faull, R. L., Williams, C. E. (1998) 3-Nitropropionic acid’s lethal triplet: cooperative pathways of neurodegeneration. Neuroreport 9, R57–R64.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee, W. T., Shen, Y. Z., Chang, C. (2000) Neuroprotective effect of lamotrigine and MK-801 on rat brain lesions induced by 3-nitropropionic acid: evaluation by magnetic resonance imaging and in vivo proton magnetic resonance spectroscopy. Neuroscience 95, 89–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Nishino, H., Hida, H., Kumazaki, M., et al. (2000) The striatum is the most vulnerable region in the brain to mitochondrial energy compromise: a hypothesis to explain its specific vulnerability. J. Neurotrauma 17, 251–260.PubMedCrossRefGoogle Scholar
  17. 17.
    Tavares, R. G., Santos, C. E., Tasca, C. I., Wajner, M., Souza, D. O., Dutra-Filho, C. S. (2001) Inhibition of glutamate uptake into synaptic vesicles from rat brain by 3-nitropropionic acid in vitro. Exp. Neurol. 172, 250–254.PubMedCrossRefGoogle Scholar
  18. 18.
    Godukhin, O. V., Zharikova, A. D., and Budantsev, A. Y. (1984) Role of presynaptic dopamine receptors in regulation of the glutamatergic neurotransmission in rat neostriatum. Neuroscience 12, 377–383.PubMedCrossRefGoogle Scholar
  19. 19.
    Ben-Shachar, D., Zuk, R., Glinka, Y. (1995) Dopamine neurotoxicity: inhibition of mitochondrial respiration. J. Neurochem. 64, 718–723.PubMedCrossRefGoogle Scholar
  20. 20.
    Maragos, W. F., Jakel, R. J., Pang, Z., Geddes, J. W. (1998) 6-Hydroxydopamine injections into the nigrostriatal pathway attenuate striatal malonate and 3-nitropropionic acid lesions. Exp. Neurol. 154, 637–644.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson, J. R., Robinson, B. L., Ali, S. F., Binienda, Z. (2000) Dopamine toxicity following long term exposure to low doses of 3-nitropropionic acid (3-NPA) in rats. Toxicol. Lett. 116, 113–118.PubMedCrossRefGoogle Scholar
  22. 22.
    Fontaine, M.A., Geddes, J.W., Banks, A., Butterfield, D.A. (2000) Effect of exogenous and endogenous antioxidants on 3-nitropionic acid-induced in vivo oxidative stress and striatal lesions: insights into Huntington’s disease. J. Neurochem. 75, 1709–1715.PubMedCrossRefGoogle Scholar
  23. 23.
    Binienda, Z., Simmons, C, Hussain, S., Slikker, W. Jr., Ali, S. F. (1998) Effect of acute exposure to 3-nitropropionic acid on activities of endogenous antioxidants in the rat brain. Neurosci. Lett. 251, 173–176.PubMedCrossRefGoogle Scholar
  24. 24.
    Reynolds, D. S. and Morton, A. J. (1998) Changes in blood-brain barrier permeability following neurotoxic lesions of rat brain can be visualised with trypan blue. J. Neurosci. Methods 79, 115–121.PubMedCrossRefGoogle Scholar
  25. 25.
    Hamilton, B. F. and Gould, D. H. (1987) Correlation of morphologic brain lesions with physiologic alterations and blood-brain barrier impairment in 3-nitropropionic acid toxicity in rats. Acta Neuropathol. 74, 67–74.PubMedCrossRefGoogle Scholar
  26. 26.
    Nishino, H., Shimano, Y., Kumazaki, M., Sakurai, T. (1995) Chronically administered 3-nitropropionic acid induces striatal lesions attributed to dysfunction of the blood-brain barrier. Neurosci. Lett. 186, 161–164.PubMedCrossRefGoogle Scholar
  27. 27.
    Nishino, H., Kumazaki, M., Fukuda, A., et al. (1997) Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dysfunction of the blood-brain barrier: involvement of dopamine toxicity. Neurosci. Res. 27, 343–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Borlongan, C. V., Nishino, H., Sanberg, P. R. (1997) Systemic, but not intraparenchymal, administration of 3-nitropropionic acid mimics the neuropathology of Huntington’s disease: a speculative explanation. Neurosci. Res. 28, 185–189.PubMedCrossRefGoogle Scholar
  29. 29.
    Bossi, S. R., Simpson, J. R., Isacson, O. (1993) Age dependence of striatal neuronal death caused by mitochondrial dysfunction. Neuroreport 4, 73–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Shigenaga, M. K., Hagen, T. M., and Ames, B. N. (1994) Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA 91, 10771–10778.PubMedCrossRefGoogle Scholar
  31. 31.
    Price, M. T., Olney, J. W., and Haft, R. (1981) Age-related changes in glutamate concentration and synaptosomal glutamate uptake in adult rat striatum. Life Sci. 28, 1365–1370.PubMedCrossRefGoogle Scholar
  32. 32.
    Nishino, H., Nakajima, K., Kumazaki, M., et al. (1998) Estrogen protects against while testosterone exacerbates vulnerability of the lateral striatal artery to chemical hypoxia by 3-nitropropionic acid. Neurosci. Res. 30, 303–312.PubMedCrossRefGoogle Scholar
  33. 33.
    Ouary, S., Bizat, N., Altairac, S., et al. (2000) Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: implications for neuroprotection studies. Neuroscience 97, 521–530.PubMedCrossRefGoogle Scholar
  34. 34.
    Blum, D., Gall, D., Cuvelier, L., Schiffmann, S. N. (2001) Topological analysis of striatal lesions induced by 3-nitropropionic acid in the Lewis rat. Neuroreport 12, 1769–72.PubMedCrossRefGoogle Scholar
  35. 35.
    Paxinos, G. and Watson, C. (1997) The Rat Brain in Stereotaxic Coordinates. Academic, San Diego.Google Scholar
  36. 36.
    Ludolph, A. C, He, F., Spencer, P. S., Hammerstad, J., and Sabri, M. (1991) 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can. J. Neurol. Sci. 18, 492–498.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Toby John Roberts
    • 1
  1. 1.Neuroimaging Research GroupInstitute of PsychiatryLondonUK

Personalised recommendations