Genetic Transformation of Conifers Utilizing Somatic Embryogenesis

  • Krystyna Klimaszewska
  • Robert G. Rutledge
  • Armand Séguin
Part of the Methods in Molecular Biology™ book series (MIMB, volume 286)


Over the last 5 yr, the production of transgenic conifers has been greatly facilitated by the ability to transform somatic embryonal tissues (somatic embryos) via cocultivation with Agrobacterium tumefaciens. This has allowed us to develop protocols for the genetic transformation of several spruce species. Furthermore, these procedures can produce an average of 20 independent transgenic lines (translines) per gram fresh mass of embryonal tissue, providing for the first time the magnitude-of-scale required for implementing large-scale functional genomics studies in conifers. Combined with efficient regeneration of transgenic trees via somatic embryos, the potential for genetic engineering of conifers has been demonstrated by stable reporter gene expression (GUS or GFP) resulting from single insert T-DNA integration events.

Key Words

Agrobacterium cocultivation conifers genetic transformation Picea somatic embryogenesis spruce 


  1. 1.
    Litvay, J. D., Verma, D. C., and Johnson, M. A. (1985) Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep. 4, 325–328.CrossRefGoogle Scholar
  2. 2.
    Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  3. 3.
    Koncz, C., and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396.CrossRefGoogle Scholar
  4. 4.
    van Engelen, F. A., Molthoff, J. W., Conner, A. J., Nap, J.-P., Pereira, A., and Stiekema, W. J. (1995) pBINPLUS: an improved plant transformation vector based on pBIN19. Trans. Res. 4, 288–290.CrossRefGoogle Scholar
  5. 5.
    Hellens, R., Mullineaux, P., and Klee, H. (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.PubMedCrossRefGoogle Scholar
  6. 6.
    Cheliak, W. M. and Klimaszewska, K. (1991) Genetic variation in somatic embryogenic response in open-pollinated families of black spruce. Theor. Appl. Genet. 82, 185–190.CrossRefGoogle Scholar
  7. 7.
    An, G., Ebert, P. R., Mitra, A. and Ha, S. B. (1988) Binary Vectors in Plant Molecular Biology Manual, Vol. A3 (Gelvin, S. B. and Schilperoort, R. A., eds.), Kluwer Academic, Dordrecht, The Netherlands, pp. 1–19.Google Scholar
  8. 8.
    Jefferson, R. A. (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–405.CrossRefGoogle Scholar
  9. 9.
    Gallagher, S. R. (1992) GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression, Academic Press, San Diego, CA, p. 221.Google Scholar
  10. 10.
    Côté, C. and Rutledge, R. G. (2003) An improved MUG fluorescent assay for the determination of GUS activity within transgenic tissue of woody plants. Plant Cell Rep. 21, 619–624.PubMedGoogle Scholar
  11. 11.
    Chang, S., Puryear, J., and Cairney, J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11, 113–116.CrossRefGoogle Scholar
  12. 12.
    Klimaszewska, K., Lachance, D., Pelletier, G., Lelu, M.-A., and Séguin, A. (2001) Regeneration of transgenic Picea glauca, P. mariana, and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. Plant 37, 748–755.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Krystyna Klimaszewska
    • 1
  • Robert G. Rutledge
    • 2
  • Armand Séguin
    • 1
  1. 1.Natural Resources Canada, Canadian Forest ServiceQuebecCanada
  2. 2.Candian Forest Service, Natural Resources CanadaQuebecCanada

Personalised recommendations