Detection of Apoptosis in Drosophila

  • Kimberly McCall
  • Jeanne S. Peterson
Part of the Methods in Molecular Biology book series (MIMB, volume 282)


Drosophila has unique genetic and cell biological advantages as a model system for the study of apoptosis. Many cell death genes are evolutionarily conserved between flies and mammals. Cell death can be induced by environmental stimuli and normally occurs during diverse developmental processes in Drosophila. Here, we review several approaches for detecting cell death in Drosophila. We provide detailed protocols for labeling apoptotic cells in the embryo and ovary using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and acridine orange. Additionally, we describe methods for ectopically expressing cell death genes in the eye and the use of transgenic flies for the detection of genetic interactions among cell death genes.

Key Words

Drosophila apoptosis TUNEL acridine orange cell death 


  1. 1.
    Richardson, H. and Kumar, S. (2002) Death to flies: Drosophila as a model system to study programmed cell death. J. Immunol. Methods 165, 21–38.CrossRefGoogle Scholar
  2. 2.
    Vernooy, S. Y., Copeland, J., Ghaboosi, N., Griffin, E. E., Yoo, S. J., and Hay, B. A. (2000) Cell death regulation in Drosophila: conservation of mechanism and unique insights. J. Cell Biol. 150, F69–F75.PubMedCrossRefGoogle Scholar
  3. 3.
    Wolff, T. and Ready, D. F. (1991) Cell death in normal and rough eye mutants of Drosophila. Development 113, 825–839.PubMedGoogle Scholar
  4. 4.
    Abrams, J. M., White, K., Fessler, L. I., and Steller, H. (1993) Programmed cell death during Drosophila embryogenesis. Development 117, 29–43.PubMedGoogle Scholar
  5. 5.
    McCall, K. and Steller, H. (1998) Requirement for DCP-1 caspase during Drosophila oogenesis. Science 179, 230–234.CrossRefGoogle Scholar
  6. 6.
    Jiang, C., Lamblin, A. F., Steller, H., and Thummel, C. S. (2000) A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol. Cell, 5, 445–455.PubMedCrossRefGoogle Scholar
  7. 7.
    White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K., and Steller., H. (1994) Genetic control of programmed cell death in Drosophila. Science 164, 677–683.CrossRefGoogle Scholar
  8. 8.
    Grether, M. E., Abrams, J. M., Agapite, J., White, K., and Steller, H. (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen, P., Nordstrom, W., Gish, B., and Abrams, J. M. (1996) grim, a novel cell death gene in Drosophila. Genes Dev. 10, 1773–1782.PubMedCrossRefGoogle Scholar
  10. 10.
    Foley, K. and Cooley, L. (1998) Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 125, 1075–1082.PubMedGoogle Scholar
  11. 11.
    Hay, B. A., Wolff, T. and Rubin, G. M. (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121–2129.PubMedGoogle Scholar
  12. 12.
    Hay, B. A., Wassarman, D. A., and Rubin, G. M. (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 13, 1253–1262.CrossRefGoogle Scholar
  13. 13.
    Martin, S. J. (2002) Destabilizing influences in apoptosis: sowing the seeds of IAP destruction. Cell 109, 793–706.PubMedCrossRefGoogle Scholar
  14. 14.
    Igaki, T., Kanda, H., Yamamoto-Goto, Y., Kanuka, H., Kuranaga, E., Aigaki, T., and Miura, M. (2002) Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J. 11, 3009–2018.CrossRefGoogle Scholar
  15. 15.
    Moreno, E., Yan, M., and Basler, K. (2002) Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr. Biol. 12, 1263–1268.PubMedCrossRefGoogle Scholar
  16. 16.
    Kanda, H., Igaki, T., Kanuka, H., Yagi, T., and Miura, M. (2002) Wengen, a member of the Drosophila tumor necrosis factor receptor superfamily, is required for Eiger signaling. J. Biol. Chem. 177, 28,372–28,375.CrossRefGoogle Scholar
  17. 17.
    Rong, Y. S., Titen, S. W., Xie, H. B., Golic, M. M., Bastiani, M., et al. (2002) Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 16, 1568–1581.PubMedCrossRefGoogle Scholar
  18. 18.
    Sogame, N., Kim, M., and Abrams, J. M. (2003) Drosophila p53 preserves genomic stability by regulating cell death. Proc. Natl. Acad. Sci. USA 100, 4696–4701.PubMedCrossRefGoogle Scholar
  19. 19.
    Yu, S. Y., Yoo, S. J., Yang, L., Zapata, C., Srinivasan, A., et al. (2002) A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development 129, 3269–3278.PubMedGoogle Scholar
  20. 20.
    Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.PubMedCrossRefGoogle Scholar
  21. 21.
    Haining, W. N., Carboy-Newcomb, C., Wei, C. L., and Steller, H. (1999) The proapoptotic function of Drosophila Hid is conserved in mammalian cells. Proc. Natl. Acad. Sci. USA 16, 4936–4941.CrossRefGoogle Scholar
  22. 22.
    Lisi, S., Mazzon, I., and White, K. (2000) Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154, 669–678.PubMedGoogle Scholar
  23. 23.
    Varkey, J., Chen, P., Jemmerson, R., and Abrams, J. M. (1999) Altered cytochrome c display precedes apoptotic cell death in Drosophila. J. Cell Biol. 144, 701–710.PubMedCrossRefGoogle Scholar
  24. 24.
    Yoo, J. Y., Huh, J. R., Muro, I., Yu, H., Wang, L., et al. (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat. Cell Biol. 4, 416–424.PubMedCrossRefGoogle Scholar
  25. 25.
    Nelson, R. E., Fessler, L. I., Takagi, Y., Blumberg, B., Keene, D. R., Olson, P. F., et al. (1994) Peroxidasin: a novel enzyme-matrix protein of Drosophila development. EMBO J. 13, 3438–3447.PubMedGoogle Scholar
  26. 26.
    Franc, N. C., Dimarcq, J. L., Lagueux, M., Hoffmann, J., and Ezekowitz, R. A. (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4, 431–443.PubMedCrossRefGoogle Scholar
  27. 27.
    Franc, N. C., Heitzler, P., Ezekowitz, R. A., and White, K. (1999) Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 184, 1991–1994.CrossRefGoogle Scholar
  28. 28.
    Cherbas, L. and Cherbas, P. (2000) Drosophila cell culture and transformation, in Drosophila Protocols (Sullivan, W., Ashburner, M., and Hawley, R. S., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 373–387.Google Scholar
  29. 29.
    Ashburner, M. (1989) Drosophila, A Laboratory Handbook, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  30. 30.
    Verheyen, E. and Cooley, L. (1994) Looking at oogenesis, in Methods in Cell Biology (Goldstein, L. S. B., and Fyrberg, E. A., eds.), Academic Press, New York, NY, pp. 545–561.Google Scholar
  31. 31.
    White, K., Tahaoglu, E., and Steller., H. (1996) Cell killing by the Drosophila gene reaper. Science 171, 805–807.CrossRefGoogle Scholar
  32. 32.
    Meier, P., Silke, J., Leevers, S. J., and Evan, G. I. (2000) The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. 19, 598–611.PubMedCrossRefGoogle Scholar
  33. 33.
    Bonini, N. M. (2000) Methods to detect patterns of cell death in Drosophila. Methods Mol. Biol. 136, 115–121.PubMedGoogle Scholar
  34. 34.
    Brachmann, C. B., Jassim, O. W., Wachsmuth, B. D., and Cagan, R. L. (2000) The Drosophila Bcl-2 family member dBorg-1 functions in the apoptotic response to UV-irradiation. Curr. Biol. 10, 547–550.PubMedCrossRefGoogle Scholar
  35. 35.
    Igaki, T., Kanuka, H., Inohara, N., Sawamoto, K., Nunez, G., Okano, H., and Miura, M. (2000) Drob-1, a Drosophila member of the Bcl-2/CED-9 family that promotes cell death. Proc. Natl. Acad. Sci. USA 17, 662–667.CrossRefGoogle Scholar
  36. 36.
    Jin, S., Martinek, S., Joo, W. S., Wortman, J. R., et al. (2000) Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 17, 7301–7306.CrossRefGoogle Scholar
  37. 37.
    Ollmann, M., Young, L. M., Di Como, C. J., Karim, F., et al. (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101, 91–101.PubMedCrossRefGoogle Scholar
  38. 38.
    Song, Z., Guan, B., Bergmann, A., Nicholson, D. W., Thornberry, N. A., Peterson, E. P., et al. (2000) Biochemical and genetic interactions between Drosophila caspases and the proapoptotic genes rpr, hid, and grim. Mol. Cell Biol. 10, 2907–2914.CrossRefGoogle Scholar
  39. 39.
    Quinn, L. M., Dorstyn, L., Mills, K., Colussi, P. A., Chen, P., Coombe, M., et al. (2000) An essential role for the caspase Dronc in developmentally programmed cell death in Drosophila. J. Biol. Chem. 175, 40,416–40,424.CrossRefGoogle Scholar
  40. 40.
    Jackson, G. R., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P. W., et al. (1998) Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 11, 633–642.CrossRefGoogle Scholar
  41. 41.
    Warrick, J. M., Paulson, H. L., Gray-Board, G. L., Bui, Q. T., Fischbeck, K. H., Pittman, R. N., et al. (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 13, 939–949.CrossRefGoogle Scholar
  42. 42.
    Gaumer, S., Guénal, I., Brun, S., Théodore, L., and Mignotte, B. (2000) Bcl-2 and Bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ. 7, 804–814.PubMedCrossRefGoogle Scholar
  43. 43.
    Shigenaga, A., Funahashi, Y., Kimura, K., Kobayakawa, Y., Kamada, S., Tsujimoto, Y., and Tanimura, T. (1997) Targeted expression of ced-3 and Ice induces programmed cell death in Drosophila. Cell Death Differ. 4, 371–377.PubMedCrossRefGoogle Scholar
  44. 44.
    Kanuka, H., Hisahara, S., Sawamoto, K., Shoji, S., Okano, H., and Miura, M. (1999) Proapoptotic activity of Caenorhabditis elegans CED-4 protein in Drosophila: implicated mechanisms for caspase activation. Proc. Natl. Acad. Sci. USA 16, 145–150.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Kimberly McCall
    • 1
  • Jeanne S. Peterson
    • 1
  1. 1.Department of BiologyBoston UniversityBoston

Personalised recommendations