In Vitro Gene Transfer to Chondrocytes and Synovial Fibroblasts by Adenoviral Vectors

  • Jean-Noel Gouze
  • Martin J. Stoddart
  • Elvire Gouze
  • Glyn D. Palmer
  • Steven C. Ghivizzani
  • Alan J. Grodzinsky
  • Christopher H. Evans
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 100)


The major requirement of a successful gene transfer is the efficient delivery of an exogenous therapeutic gene to the appropriate cell type with subsequent high or regulated levels of expression. In this context, viral systems are more efficient than nonviral systems, giving higher levels of gene expression for longer periods. For the application of osteoarthritis (OA), gene products triggering anti-inflammatory or chondroprotective effects are of obvious therapeutic utility. Thus, their cognate genes are candidates for use in the gene therapy of OA. In this chapter, we describe the preparation, the use, and the effect of the transduction of chondrocytes or synovial fibroblasts with an adenoviral vector encoding the cDNA for glutamine: fructose-6-phosphate amidotransferase (GFAT). This is intended to serve as an example of a technology that can be used to evaluate the biological effects of overexpression of other cDNAs.

Key Words

Gene transfer adenovirus GFAT chondrocyte synoviocyte gene therapy osteoarthritis interleukin-1 glucosamine 


  1. 1.
    Pincus, T. and Callahan, L. F. (1992) Early mortality in RA predicted by poor clinical status. Bull. Rheum. Dis. 41, 1–4.PubMedGoogle Scholar
  2. 2.
    Felson, D. T., Lawrence, R. C., Hochberg, M. C., et al. (2000) Osteoarthritis: new insights. Part 2: treatment approaches. Ann. Intern. Med. 133, 726–737.PubMedGoogle Scholar
  3. 3.
    Smalley, W. E., Ray, W. A., Daugherty, J. R., and Griffin, M. R. (1995) Nonsteroidal anti-inflammatory drugs and the incidence of hospitalizations for peptic ulcer disease in elderly persons. Am. J. Epidemiol. 141, 539–545.PubMedGoogle Scholar
  4. 4.
    Tamblyn, R., Berkson, L., Dauphinee, W. D., et al. (1997) Unnecessary prescribing of NSAIDs and the management of NSAID-related gastropathy in medical practice. Ann. Intern. Med. 127, 429–438.PubMedGoogle Scholar
  5. 5.
    Reginster, J. Y., Deroisy, R., Rovati, L. C., et al. (2001) Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet 357, 251–256.CrossRefPubMedGoogle Scholar
  6. 6.
    Muller-Fassbender, H., Bach, G. L., Haase, W., Rovati, L. C., and Setnikar, I. (1994) Glucosamine sulfate compared to ibuprofen in osteoarthritis of the knee. Osteoarthritis Cartilage 2, 61–69.CrossRefPubMedGoogle Scholar
  7. 7.
    Bassleer, C., Rovati, L., and Franchimont, P. (1998) Stimulation of proteoglycan production by glucosamine sulfate in chondrocytes isolated from human osteoarthritic articular cartilage in vitro. Osteoarthritis Cartilage 6, 427–434.CrossRefPubMedGoogle Scholar
  8. 8.
    Gouze, J. N., Bordji, K., Gulberti, S., et al. (2001) Interleukin-1β down-regulates the expression of glucuronosyltransferase I, a key enzyme priming glycosaminoglycan biosynthesis: influence of glucosamine on interleukin-1β-mediated effects in rat chondrocytes. Arthritis Rheum. 44, 351–360CrossRefPubMedGoogle Scholar
  9. 9.
    Gouze, J. N., Bianchi, A., Becuwe, P., et al. (2002) Glucosamine modulates IL-1-induced activation of rat chondrocytes at a receptor level, and by inhibiting the NF-κ B pathway. FEBS Lett. 510, 166–170.CrossRefPubMedGoogle Scholar
  10. 10.
    Sandy, J. D., Gamett, D., Thompson, V., and Verscharen, C. (1998) Chondrocyte-mediated catabolism of aggrecan: aggrecanase-dependent cleavage induced by interleukin-1 or retinoic acid can be inhibited by glucosamine. Biochem. J. 335, 59–66.PubMedGoogle Scholar
  11. 11.
    Shikhman, A. R., Kuhn, K., Alaaeddine, N., and Lotz, M. (2001) N-acetylglucosamine prevents IL-1 β-mediated activation of human chondrocytes. J. Immunol. 166, 5155–5160.PubMedGoogle Scholar
  12. 12.
    Chang, Q., Su, K., Baker, J. R., Yang, X., Paterson, A. J., and Kudlow, J. E. (2000) Phosphorylation of human glutamine:fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase at serine 205 blocks the enzyme activity. J. Biol. Chem. 275, 21,981–21,987.CrossRefPubMedGoogle Scholar
  13. 13.
    Gouze, J., Ghivizzani, S., Gouze, E., et al. (2004) Adenovirus-mediated gene transfer of glutamine/fructose-6-phosphate amidotransferase antagonizes the effects of interleukin 1 beta in rat chondrocytes. Osteoarthritic Cartilage 12, 217–224.CrossRefGoogle Scholar
  14. 14.
    Ghivizzani, S. C., Lechman, E. R., Kang, R., et al. (1998) Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor alpha soluble receptors to rabbit knees with experimental arthritis has local and distal antiarthritic effects. Proc. Natl. Acad. Sci. USA 95, 4613–4618.CrossRefPubMedGoogle Scholar
  15. 15.
    Ghivizzani, S. C., Oligino, T. J., Glorioso, J. C., Robbins, P. D., and Evans, C. H. (2001) Direct gene delivery strategies for the treatment of rheumatoid arthritis. Drug. Discov. Today 6, 259–267.CrossRefPubMedGoogle Scholar
  16. 16.
    Yao, Q., Glorioso, J. C., Evans, C. H., et al. (2000) Adenoviral mediated delivery of FAS ligand to arthritic joints causes extensive apoptosis in the synovial lining. J. Gene Med. 2, 210–219.CrossRefPubMedGoogle Scholar
  17. 17.
    Hardy, S., Kitamura, M., Harris-Stansil, T., Dai, Y., and Phipps, M. L. (1997) Construction of adenovirus vectors through Cre-lox recombination. J. Virol. 71, 1842–1849.PubMedGoogle Scholar
  18. 18.
    Sambrook, J., Fritsch, E. and Maniatis, T. (eds.) (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  19. 19.
    Palmer, G. D., Gouze, E., Gouze, J. N., Betz, O. B., Evans, C. H., and Ghivizzani, S. C. (2003) Gene transfer to articular chondrocytes with recombinant adenovirus. Methods Mol. Biol. 215, 235–246.PubMedGoogle Scholar
  20. 20.
    Fasbender, A., Lee, J. H., Walters, R. W., Moninger, T. O., Zabner, J., and Welsh, M. J. (1998) Incorporation of adenovirus in calcium phosphate precipitates enhances gene transfer to airway epithelia in vitro and in vivo. J. Clin. Invest. 102, 184–193.CrossRefPubMedGoogle Scholar
  21. 21.
    Frohman, M. A., Dush, M. K., and Martin, G. R. (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998–9002.CrossRefPubMedGoogle Scholar
  22. 22.
    Khiri, H., Reynier, P., Peyrol, N., Lerique, B., Torresani, J., and Planells, R. (1996) Quantitative multistandard RT-PCR assay using interspecies polymorphism. Mol. Cell Probes 10, 201–211.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Jean-Noel Gouze
    • 1
    • 2
  • Martin J. Stoddart
    • 3
    • 4
  • Elvire Gouze
    • 3
  • Glyn D. Palmer
    • 5
    • 6
  • Steven C. Ghivizzani
    • 3
  • Alan J. Grodzinsky
    • 1
  • Christopher H. Evans
    • 3
  1. 1.Center for Molecular OrthopaedicsHarvard Medical SchoolBoston
  2. 2.Center for Biomedical EngineeringMassachusetts Institute of TechnologyCambridge
  3. 3.Center for Molecular OrthopaedicsHarvard Medical SchoolBoston
  4. 4.Laboratory for Experimental Cartilage ResearchCenter for Rheumatology and Bone DiseaseZürichSwitzerland
  5. 5.Center for Molecular OrthopaedicsBrigham
  6. 6.Women’s HospitalHarvard Medical SchoolBoston

Personalised recommendations