Autoimmunity pp 155-171

Part of the Methods in Molecular Medicine™ book series (MIMM, volume 102)

Evaluation of Autoimmunity to Transaldolase in Multiple Sclerosis

  • Brian Niland
  • Andras Perl

Summary

Transaldolase is a target of autoimmunity mediated by T cells and antibody (Ab) in patients with multiple sclerosis. Functional T-cell assays, T- and B-cell epitope mapping, and detection of transaldolase-specific antibodies in patients with multiple sclerosis are described. Recombinant transaldolase was produced in a prokaryotic expression vector for use in Western blot analysis of sera of these patients. Overlapping transaldolase peptides 15 amino acids (aa) long were synthesized onto cellulose membranes to map immunodominant B-cell epitopes. Amino acid sequence homologies between viral peptides and immunodominant B-cell epitopes of transaldolase were identified using a computer-based algorithm. Direct assessment of molecular mimicry between transaldolase B-cell epitopes and related viral peptides is also shown. T-cell epitopes are mapped in a T-cell proliferation assay using multiple sclerosis patient and control donor cells. Autoantigen-specific T cells are identified by MHC-peptide tetramer staining using flow cytometry analysis.

Key Words

Autoimmunity epitope mapping MHC-tetramer molecular mimicry multiple sclerosis transaldolase 

References

  1. 1.
    Oldstone, M. B. A. (1998) Molecular mimicry and immune-mediated diseases. FASEB J. 12, 1255–1265.PubMedGoogle Scholar
  2. 2.
    Wucherpfennig, K. W. and Strominger, J. L. (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705.PubMedCrossRefGoogle Scholar
  3. 3.
    Martin, R., McFarland, H. F., and McFarlin, D. E. (1992) Immunological aspects of demyelinating diseases. Annu. Rev. Immunol. 10, 153–187.PubMedCrossRefGoogle Scholar
  4. 4.
    Banki, K., Colombo, E., Sia, F., Halladay, D., Mattson, D., Tatum, A., et al. (1994) Oligodendrocyte-specific expression and autoantigenicity of transaldolase in multiple sclerosis. J. Exp. Med. 180, 1649–1663.PubMedCrossRefGoogle Scholar
  5. 5.
    Roder, J. and Hickey, W. F. (1996) Mouse models, immunology, multiple sclerosis and myelination. Nat. Genet. 12, 6–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Lees, M. B. and Brostoff, S. W. (1984) Proteins of myelin, in Myelin (Morell, P., ed), Plenum Press, New York, pp. 197–224.Google Scholar
  7. 7.
    Banki, K., Halladay, D., and Perl, A. (1994) Cloning and expression of the human gene for transaldolase: a novel highly repetitive element constitutes an integral part of the coding sequence. J. Biol. Chem. 269, 2847–2851.PubMedGoogle Scholar
  8. 8.
    Colombo, E., Banki, K., Tatum, A. H., Daucher, J., Ferrante, P., Murray, R. S., et al. (1997) Comparative analysis of antibody and cell-mediated autoimmunity to transaldolase and myelin basic protein in patients with multiple sclerosis. J. Clin. Invest. 99, 1238–1250.PubMedCrossRefGoogle Scholar
  9. 9.
    Devereux, J., Haeberli, P., and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387–395.PubMedCrossRefGoogle Scholar
  10. 10.
    Parker, K. HLA peptide binding predictions. NIH BIMAS website: http://bimas.dcrt.nih.gov/molbio/hla_bind/. Accessed April, 2003.
  11. 11.
    Smith, D. B. and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Banki, K. and Perl, A. (1996) Inhibition of the catalytic activity of human transaldolase by antibodies and site-directed mutagenesis. FEBS Lett. 378, 161–165.PubMedCrossRefGoogle Scholar
  13. 13.
    Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.PubMedCrossRefGoogle Scholar
  14. 14.
    Geysen, H. M., Meloen, R. H., and Barteling, S. J. (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 81, 3998–4002.PubMedCrossRefGoogle Scholar
  15. 15.
    Geysen, H. M. (1990) Molecular technology: peptide epitope mapping and the pin technology. Southeast Asian J. Trop. Med. Public Health 21, 523–533.PubMedGoogle Scholar
  16. 16.
    Williams, R.C., Jr., Staud, R., Malone, C. C., Payabyab, J., Byres, L., and Underwood, D. (1994) Epitopes on proteinase-3 recognized by antibodies from patients with Wegener’s granulomatosis. J. Immunol. 152, 4722–4737.PubMedGoogle Scholar
  17. 17.
    Lang, E., Szendrei, G., Lee, V. M., and Otvos, L., Jr. (1994) Spectroscopic evidence that monoclonal antibodies recognize the dominant conformation of mediumsized synthetic peptides. J. Immunol. Methods 170, 103–115.PubMedCrossRefGoogle Scholar
  18. 18.
    Esposito, M., Venkatesh, V., Otvos, L., Weng, Z., Vajda, S., Banki, K., et al. (1999) Human transaldolase and cross-reactive viral epitopes identified by autoantibodies of multiple sclerosis patients. J. Immunol. 163, 4027–4032.PubMedGoogle Scholar
  19. 19.
    Frank, R. (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48, 9217–9232.CrossRefGoogle Scholar
  20. 20.
    Fleiss, J. L. (1981) Statistical Methods for Rates and Proportions, Wiley, New York.Google Scholar
  21. 21.
    Germain, R. N. (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76, 287–299.PubMedCrossRefGoogle Scholar
  22. 22.
    Sette, A., Vitiello, A., Reherman, B., Fowler, P., Nayersina, R., Kast, W. M., et al. (1994) The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol. 153, 5586–5592.PubMedGoogle Scholar
  23. 23.
    Tsuchida, T., Parker, K. C., Turner, R. V., McFarland, H. F., Coligan, J. E., and Biddison, W. E. (1994) Autoreactive CD8+ T-cell responses to human myelin protein-derived peptides. Proc. Natl. Acad. Sci. USA 91, 10,859–10,863.PubMedCrossRefGoogle Scholar
  24. 24.
    Parker, K. C., Bednarek, M. A. and Coligan, J. E. (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152, 163–175.PubMedGoogle Scholar
  25. 25.
    Altman, J. D., Moss, P. A., Goulder, P. J., Barouch, D. H., McHeyzer-Williams, M. G., Bell, J. I., et al. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96. Published erratum appears in Science (1998) 280, 1821.PubMedCrossRefGoogle Scholar
  26. 26.
    Bodinier, M., Peyrat, M. A., Tournay, C., Davodeau, F., Romagne, F., Bonneville, M., et al. (2000) Efficient detection and immunomagnetic sorting of specific T cells using multimers of MHC class I and peptide with reduced CD8 binding. Nat. Med. 6, 707–710.PubMedCrossRefGoogle Scholar
  27. 27.
    Kuroda, M. J., Schmitz, J. E., Barouch, D. H., Craiu, A., Allen, T. M., Sette, A., et al. (1998) Analysis of Gag-specific cytotoxic T lymphocytes in simian immunodeficiency virus-infected rhesus monkeys by cell staining with a tetrameric major histocompatibility complex class I-peptide complex. J. Exp. Med. 187, 1373–1381.PubMedCrossRefGoogle Scholar
  28. 28.
    National Institutes of Allergy and Infectious Diseases (NIAID), Tetramer Facility Guide, McKesson Biosciences Corp. http://www.niaid.nih.gov/reposit/tetramer/index.html. April 2003
  29. 29.
    McMichael, A. J. and O’Callaghan, C. A. (1998) A new look at T cells. J. Exp. Med. 187, 1367–1371.PubMedCrossRefGoogle Scholar
  30. 30.
    Rudiger, S., Germeroth, L., Schneider-Mergener, J., and Bukau, B. (1997) Substrate-specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501–1507.PubMedCrossRefGoogle Scholar
  31. 31.
    Otvos, L., Jr., Pease, A. M., Bokonyi, K., Giles-Davis, W., Rogers, M. E., Hintz, P. A., et al. (2000) In situ stimulation of a T helper cell hybridoma with a cellulose-bound peptide antigen. J. Immunol. Methods 233, 95–105.PubMedCrossRefGoogle Scholar
  32. 32.
    Deibler, G. E., Martenson, R. E., and Kies, M. W. (1972) Large scale preparation of myelin basic protein from central nervous tissue of several mammalian species. Prep. Biochem. 2, 139–165.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Brian Niland
    • 1
  • Andras Perl
    • 2
  1. 1.Departments of Medicine, Microbiology, and Immunology, College of MedicineUpstate Medical University, State University of New YorkSyracuse
  2. 2.Division of Rheumatology, Departments of Medicine and of Microbiology and Immunology, College of MedicineUpstate Medical University, State University of New YorkSyracuse

Personalised recommendations