Advertisement

Lentiviral-Mediated Gene Transfer to Model Triplet Repeat Disorders

  • Etienne Régulier
  • Diana Zala
  • Patrick Aebischer
  • Nicole Déglon
Part of the Methods in Molecular Biology™ book series (MIMB, volume 277)

Summary

This chapter describes the potential use of viral-mediated gene transfer in the central nervous system as a new strategy in developing animal models of neurodegenerative diseases. To illustrate the approach, procedures for the production of lentiviral vectors encoding polyQ proteins are provided, as well as methods for the determination of viral titers, in vitro infection, and basic protocols for in vivo studies in rodents.

Key Words

Gene transfer brain lentiviral vectors primary cultures animal models rodent 

References

  1. 1.
    Link, C. D. (2001) Transgenic invertebrate models of age-associated neurodegenerative diseases. Mech. Ageing Dev. 122, 1639–1649.PubMedCrossRefGoogle Scholar
  2. 2.
    Sipione, S. and Cattaneo, E. (2001) Modeling huntington’s disease in cells, flies, and mice. Mol. Neurobiol. 23, 21–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Zoghbi, H. and Botas, J. (2002) Mouse and fly models of neurodegeneration. Trends Genet. 18, 463.PubMedCrossRefGoogle Scholar
  4. 4.
    Cattaneo, E. and Conti, L. (1998) Generation and characterization of embryonic striatal conditionally immortalized ST14A cells. J. Neurosci. Res. 53, 223–234.PubMedCrossRefGoogle Scholar
  5. 5.
    Saudou, F., Finkbeiner, S., Devys, D., et al. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Lunkes, A. and Mandel, J. L. (1998) A cellular model that recapitulates major pathogenic steps of Huntington’s disease. Hum. Mol. Genet. 7, 1355–1361.PubMedCrossRefGoogle Scholar
  7. 7 Ho, L. W., Brown, R., Maxwell, M., et al. (2001) Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington’s disease. J. Med. Genet. 38, 450–452.PubMedCrossRefGoogle Scholar
  8. 8.
    Senut, M. C., Suhr, S. T., Kaspar, B., et al. (2000) Intraneuronal aggregate formation and cell death after viral expression of expanded polyglutamine tracts in the adult rat brain. J. Neurosci. 20, 219–229.PubMedGoogle Scholar
  9. 9.
    de Almeida, L. P., Ross, C. A., Zala, D., et al. (2002) Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J. Neurosci. 22, 3473–3483.PubMedGoogle Scholar
  10. 10.
    Klein, R. L., King, M. A., Hamby, M. E., et al. (2002) Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Hum. Gene Ther. 13, 605–612.PubMedCrossRefGoogle Scholar
  11. 11.
    Lo Bianco, C., Ridet, J. L., Schneider, B. L., et al. (2002) Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 99, 10,813–10,818.PubMedCrossRefGoogle Scholar
  12. 12.
    Kirik, D., Rosenblad, C., Burger, C., et al. (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J. Neurosci. 22, 2780–2791.PubMedGoogle Scholar
  13. 13.
    Kirik, D., Annett, L. E., Burger, C., et al. (2003) Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 100, 2884–2889.PubMedCrossRefGoogle Scholar
  14. 14.
    Janson, C. G., McPhee, S. W., Leone, P., et al. (2001) Viral-based gene transfer to the mammalian CNS for functional genomic studies. Trends Neurosci. 24, 706–712.PubMedCrossRefGoogle Scholar
  15. 15.
    Hsich, G., Sena-Esteves, M., and Breakefield, X. O. (2002) Critical issues in gene therapy for neurologic disease. Hum. Gene Ther. 13, 579–604.PubMedCrossRefGoogle Scholar
  16. 16.
    Kay, M. A., Glorioso, J. C., and Naldini, L. (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature Med. 7, 33–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Hurlbert, M. S., Zhou, W., Wasmeier, C., et al. (1999) Mice transgenic for an expanded CAG repeat in the Huntington’s disease gene develop diabetes. Diabetes 48, 649–651.PubMedCrossRefGoogle Scholar
  18. 18.
    Mangiarini, L. F.-S., Sathasivam, K. F.-S., Seller, M. F.-C., et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3), 493–506.PubMedCrossRefGoogle Scholar
  19. 19.
    Reddy, P. H., Williams, M., and Tagle, D. A. (1999) Recent advances in understanding the pathogenesis of Huntington’s disease. Trends Neurosci. 22, 248–255.PubMedCrossRefGoogle Scholar
  20. 20.
    Kafri, T., van Praag, H., Gage, F. H., et al. (2000) Lentiviral vectors: regulated gene expression. Mol. Ther. 1, 516–521.PubMedCrossRefGoogle Scholar
  21. 21.
    Mansuy, I. M. F.-B. and Bujard, H. (2000) Tetracycline-regulated gene expression in the brain. Curr. Opin. Neurobiol. 10, 593–596.PubMedCrossRefGoogle Scholar
  22. 22.
    Regulier, E., Pereira de Almeida, L., Sommer, B., et al. (2002) Dose-dependent neuroprotective effect of ciliary neurotrophic factor delivered via tetracycline-regulated lentiviral vectors in the quinolinic acid rat model of Huntington’s disease. Hum. Gene Ther. 13, 1981–1990.PubMedCrossRefGoogle Scholar
  23. 23.
    Washbourne, P. and McAllister, A. K. (2002) Techniques for gene transfer into neurons. Curr. Opin. Neurobiol. 12, 566–573.PubMedCrossRefGoogle Scholar
  24. 24.
    Zufferey, R., Nagy, D., Mandel, R. J., et al. (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature 15, 871–875.CrossRefGoogle Scholar
  25. 25.
    Naldini, L., Blomer, U., Gallay, P., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.PubMedCrossRefGoogle Scholar
  26. 26.
    Naldini, L., Blomer, U., Gage, F. H., et al. (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11,382–11,388.PubMedCrossRefGoogle Scholar
  27. 27.
    Poeschla, E. M., Wong-Staal, F., and Looney, D. J. (1998) Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nature Med. 4, 354–357.PubMedCrossRefGoogle Scholar
  28. 28.
    Rohll, J. B., Mitrophanous, K. A., Martin-Rendon, E., et al. (2002) Design, production, safety, evaluation, and clinical applications of nonprimate lentiviral vectors. Methods Enzymol. 346, 466–500.PubMedCrossRefGoogle Scholar
  29. 29.
    Negre, D., Duisit, G., Mangeot, P. E., et al. (2002) Lentiviral vectors derived from simian immunodeficiency virus. Curr. Topics Microbiol. Immunol. 261, 53–74.Google Scholar
  30. 30.
    Zufferey, R., Donello, J. E., Trono, D., et al. (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892.PubMedGoogle Scholar
  31. 31.
    Zennou, V., Petit, C., Guetard, D., et al. (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101, 173–185.PubMedCrossRefGoogle Scholar
  32. 32.
    Follenzi, A., Ailles, L. E., Bakovic, S., et al. (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nature Genet. 25, 217–222.PubMedCrossRefGoogle Scholar
  33. 33.
    Sirven, A., Pflumio, F., Zennou, V., et al. (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96, 4103–4110.PubMedGoogle Scholar
  34. 34.
    Deglon, N., Tseng, J. L., Bensadoun, J. C., et al. (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson’s disease. Hum. Gene Ther. 11, 179–190.PubMedCrossRefGoogle Scholar
  35. 35.
    Dull, T., Zufferey, R., Kelly, M., et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471.PubMedGoogle Scholar
  36. 36.
    Deglon, N. and Aebischer, P. (2002) Lentiviruses as vectors for CNS diseases. Curr. Topics Microbiol. Immunol. 261, 191–209.Google Scholar
  37. 37.
    Blomer, U., Kafri, T., Randolph-Moore, L., et al. (1998) Bcl-xL protects adult septal cholinergic neurons from axotomized cell death. Proc. Natl. Acad. Sci. USA 95, 2603–2608.PubMedCrossRefGoogle Scholar
  38. 38.
    Farson, D., Witt, R., McGuinness, R., et al. (2001) A new-generation stable inducible packaging cell line for lentiviral vectors. Hum. Gene Ther. 12, 981–997.PubMedCrossRefGoogle Scholar
  39. 39.
    Yang, S., Delgado, R., King, S. R., et al. (1999) Generation of retroviral vector for clinical studies using transient transfection. Hum. Gene Ther. 10, 123–132.PubMedCrossRefGoogle Scholar
  40. 40.
    Mitrophanous, K., Yoon, S., Rohll, J., et al. (1999) Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther. 6, 1808–1818.PubMedCrossRefGoogle Scholar
  41. 41.
    Negre, D., Mangeot, P. E., Duisit, G., et al. (2000) Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther. 7, 1613–1623.PubMedCrossRefGoogle Scholar
  42. 42.
    Stitz, J., Buchholz, C. J., Engelstadter, M., et al. (2000) Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 273, 16–20.PubMedCrossRefGoogle Scholar
  43. 43.
    Duisit, G., Conrath, H., Saleun, S., et al. (2002) Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol. Ther. 6, 446–454.PubMedCrossRefGoogle Scholar
  44. 44.
    Kumar, M., Bradow, B. P., and Zimmerberg, J. (2003) Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum. Gene Ther. 14, 67–77.PubMedCrossRefGoogle Scholar
  45. 45.
    Sastry, L., Johnson, T., Hobson, M. J., et al. (2002) Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther. 9, 1155–1162.PubMedCrossRefGoogle Scholar
  46. 46.
    Scherr, M., Battmer, K., Blomer, U., et al. (2001) Quantitative determination of lentiviral vector particle numbers by real-time PCR. Biotechniques 31, 520–524.PubMedGoogle Scholar
  47. 47.
    Bensadoun, J. C., Mirochnitchenko, O., Inouye, M., et al. (1998) Attenuation of 6-OHDAinduced neurotoxicity in glutathione peroxidase transgenic mice. Eur. J. Neurosci. 10, 3231–3236.PubMedCrossRefGoogle Scholar
  48. 48.
    Messier, C., Emond, S., and Ethier, K. (1999) New techniques in stereotaxic surgery and anesthesia in the mouse. Pharmacol. Biochem. Behav. 63, 313–318.PubMedCrossRefGoogle Scholar
  49. 49.
    Paxinos, G., Watson, C., Pennisi, M., et al. (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J. Neurosci. Methods 13, 139–143.PubMedCrossRefGoogle Scholar
  50. 50.
    Bensadoun, J. C., Deglon, N., Tseng, J. L., et al. (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp. Neurol. 164(1), 15–24.PubMedCrossRefGoogle Scholar
  51. 51.
    Richardson, J. H., Hofmann, W., Sodroski, J. G., et al. (1998) Intrabody-mediated knockout of the high-affinity IL-2 receptor in primary human T cells using a bicistronic lentivirus vector. Gene Ther. 5, 635–644.PubMedCrossRefGoogle Scholar
  52. 52.
    Reiser, J. (2000) Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther. 7, 910–913.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang, B., Xia, H. Q., Cleghorn, G., et al. (2001) A highly efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors. Gene Ther. 8, 1745–1751.PubMedCrossRefGoogle Scholar
  54. 54.
    Scherr, M., Battmer, K., Eder, M., et al. (2002) Efficient gene transfer into the CNS by lentiviral vectors purified by anion exchange chromatography. Gene Ther. 9, 1708–1714.PubMedCrossRefGoogle Scholar
  55. 55.
    Connolly, J. B. (2002) Lentiviruses in gene therapy clinical research. Gene Ther. 9, 1730–1734.PubMedCrossRefGoogle Scholar
  56. 56.
    Follenzi, A. and Naldini, L. (2002) HIV-based vectors. Preparation and use. Methods Mol. Med. 69, 259–274.PubMedGoogle Scholar
  57. 57.
    Higashikawa, F. and Chang, L. (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280, 124–131.PubMedCrossRefGoogle Scholar
  58. 58.
    Clavel, F. and Charneau, P. (1994) Fusion from without directed by human immunodeficiency virus particles. J. Virol. 68, 1179–1185.PubMedGoogle Scholar
  59. 59.
    Delenda, C., Audit, M., and Danos, O. (2002) Biosafety issues in lentivector production. Curr. Topics Microbiol. Immunol. 261, 123–141.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Etienne Régulier
    • 1
  • Diana Zala
    • 1
  • Patrick Aebischer
    • 1
  • Nicole Déglon
    • 1
  1. 1.Institute of Neuroscience, School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations