Skip to main content

Antibodies Against Huntingtin

Production and Screening of Monoclonals and Single-Chain Recombinant Forms

  • Protocol
  • 798 Accesses

Part of the Methods in Molecular Biology™ book series (MIMB,volume 277)

Summary

Antibodies can be extremely useful tools for the field of triplet repeat diseases. These reagents are important for localizing proteins in tissues, and within cells, they can be used in the isolation and characterization of the components of protein complexes, they can distinguish proteins with normal or an expanded polyglutamine repeat, they may be able to distinguish distinct conformations of a protein, and they can be used to perturb the function of proteins in living cells. Our group has produced monoclonal and recombinant single-chain antibodies that can be used for each of these purposes with huntingtin. This is the protein that, when mutated to contain an expanded polyQ motif, causes Huntington’s disease.

Key Words

  • MAb
  • scFv
  • huntingtin

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-804-8:087
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-804-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bennett, M. J., Huey-Tubman, K. E., Herr, A. B., et al. (2002) A linear lattice model for polyglutamine in CAG-expansion diseases. Proc. Natl. Acad. Sci. USA 99, 11,634–11,639.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Ko, J., Ou, S., and Patterson, P. H. (2001) New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res. Bull. 56, 319–329.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Ko, J. and Patterson, P. H. Unpublished data.

    Google Scholar 

  4. Khoshnan, A., Ko, J., and Patterson, P. H. (2002) Effects of intracellular expression of anti-huntingtin antibodies of various specificities on mutant huntingtin aggregation and toxicity. Proc. Natl. Acad. Sci. USA 99, 1002–1007.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Jackson, J. R., Salecker, I., Dong, X., et al. (1998) Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Jackson, G., Khoshnan, A., and Patterson, P. H. Unpublished data.

    Google Scholar 

  7. Khoshnan, A., Reinhart, P., and Patterson, P. H. Unpublished data.

    Google Scholar 

  8. Harlow, E. and Lane, D. (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 55–56 and 72–73.

    Google Scholar 

  9. Gullick, W. J. (1988) Production of antiserum to synthetic peptides. Methods Mol. Biol. 3, 341–354.

    Google Scholar 

  10. Hawkes, R., Niday, E., and Gordan, J. (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal. Biochem. 119, 142–147.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Al Moudallal, Z., Altschuh, D., Briand, J. P., et al. (1984) Comparative sensitivity of different ELISA procedures for detecting monoclonal antibodies. J. Immunol. Methods 68, 35–43.

    CrossRef  Google Scholar 

  12. Birk, H.-W. and Koepsell, H. (1987) Reaction of monoclonal antibodies with plasma membrane proteins after binding on nitrocellulose: renaturation of antigenic binding sites and reduction of nonspecific antibody binding. Anal. Biochem. 164, 12–22.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Davies, D. R., Padlan, E. A., and Sheriff, S. (1990) Antibody-antigen complexes. Annu. Rev. Biochem. 59, 439–473.

    PubMed  CrossRef  CAS  Google Scholar 

  14. Ou, S. K. and Patterson, P. H. (1997) A more efficient and economical approach for monoclonal antibody production. J. Immunol. Methods 209, 105–108.

    CrossRef  Google Scholar 

  15. Stang, B. V., Wood, P. A., Reddington, J. J., et al. (1998) Monoclonal antibody production in gas-permeable flexible flasks, using serum-free medium. Contemp. Topics 37, 55–60.

    Google Scholar 

  16. Scott, L. E., Aggett, H., and Glencross, D. K. (2001) Manufacture of pure monoclonal antibodies by heterogeneous culture without downstream purification. Biotechnique 31, 666–668.

    CAS  Google Scholar 

  17. Jackson, L. R., Trudel, L. J., and Lipman, N. S. (1999) Small-scale monoclonal antibody production in vitro: methods and resources. Lab. Anim. 28, 20–30.

    Google Scholar 

  18. Marx, U., Embleton, M. J., Fischer, R., et al. (1997) Monoclonal antibody production. The report and recommendations of ECVAM workshop 23. Altern. Lab. Anim. 25, 121–137.

    Google Scholar 

  19. Ou, S. K., Hwang, J. M., and Patterson, P. H. (1993) A modified method for obtaining large amounts of high titer polyclonal ascites fluid. J. Immunol. Methods 165, 75–80.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Rondon, I. J. and Marasco, W. A. (1997) Intracellular antibodies (intrabodies) for gene therapy of infectious diseases. Annu. Rev. Microbiol. 51, 257–283.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Lecerf, J.-M., Shirley, T. L., Zhu, Q., et al. (2001) Human single chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington’s disease. Proc. Natl. Acad. Sci. USA 98, 4764–4769.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Winter, G. (1998) Making antibody and peptide ligands by repertoire selection technologies. J. Mol. Recog. 11, 126–127.

    CrossRef  CAS  Google Scholar 

  23. Khoshnan, A., Ko, J., Paige, L., et al. Submitted.

    Google Scholar 

  24. Matthew, W. D. and Sandrock, A. W. (1987) Cyclophosphamide treatment used to manipulate the immune response for the production of monoclonal antibodies. J. Immunol. Methods 100, 73–82.

    PubMed  CrossRef  CAS  Google Scholar 

  25. Lebron, J. A., Shen, H., Bjorkman, P. J., et al. (1999) Tolerization of adult mice to immunodominant proteins before monoclonal antibody production. J. Immunol. Methods 222, 59–63.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Lipman N. S., Trudel L. J., Murphy J. C., et al. (1992) Comparison of immune response potentiation and in vivo inflammatory effects of Freund’s and RIBI adjuvants in mice. Lab. Anim. Sci. 42, 193–197.

    PubMed  CAS  Google Scholar 

  27. Rudbach, J. A., Cantrell, J. L., and Ulrich, J. T. (1988) Molecularly engineered microbial immunostimulators, in Technological Advances in Vaccine Development (L. Lasky, ed.), Alan R. Liss, New York, pp. 443–454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Khoshnan, A., Ou, S., Ko, J., Patterson, P.H. (2004). Antibodies Against Huntingtin. In: Kohwi, Y. (eds) Trinucleotide Repeat Protocols. Methods in Molecular Biology™, vol 277. Humana Press. https://doi.org/10.1385/1-59259-804-8:087

Download citation

  • DOI: https://doi.org/10.1385/1-59259-804-8:087

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-243-8

  • Online ISBN: 978-1-59259-804-5

  • eBook Packages: Springer Protocols