Trinucleotide Repeat Protocols pp 61-76

Part of the Methods in Molecular Biology™ book series (MIMB, volume 277)

Analysis of Unstable Triplet Repeats Using Small-Pool Polymerase Chain Reaction

  • Mário Gomes-Pereira
  • Sanjay I. Bidichandani
  • Darren G. Monckton

Summary

Small-pool polymerase chain reaction (PCR) constitutes the PCR amplification of a trinucleotide repeat in multiple small pools of input DNA containing in the order of from 0.5 to 200 genome equivalents. Products are resolved by agarose gel electrophoresis and detected by Southern blot hybridization under conditions that allow the identification of products derived from single-input molecules. The method allows the detailed quantification of the degree of repeat-length variation in a given sample, including the detection of common variants and those alleles present only in a small subset of cells. Detailed analysis of repeat dynamics is essential for a complete understanding of the molecular mechanisms that generate diversity and lead to disease in the unstable trinucleotide DNA repeat disorders.

Key Words

Mutation polymerase chain reaction trinucleotide repeat myotonic dystrophy Huntington’s disease Friedreich ataxia spinocerebellar ataxia small-pool PCR unstable DNA expansion repeat dynamics Southern blot triplet repeat sperm microsatellite 

References

  1. 1.
    Richards, R. I. (2001) Dynamic mutations: a decade of unstable expanded repeats in human genetic disease. Hum. Mol. Genet. 10, 2187–2194.PubMedCrossRefGoogle Scholar
  2. 2.
    Leeflang, E. P., Zhang, L., Tavaré, S., et al. (1995) Single sperm analysis of the trinucleotide repeats in the Huntington’s disease gene: quantification of the mutation frequency and spectrum. Hum. Mol. Genet. 4, 1519–1526.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang, L., Leeflang, E. P., Yu, J., et al. (1994) Studying human mutations by sperm typing: instability of CAG trinucleotide repeats in the human androgen receptor gene. Nature Genet. 7, 531–535.PubMedCrossRefGoogle Scholar
  4. 4.
    Jeffreys, A. J., Tamaki, K., MacLeod, A., et al. (1994) Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145.PubMedCrossRefGoogle Scholar
  5. 5.
    Monckton, D. G., Wong, L.-J. C., Ashizawa, T., et al. (1995) Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum. Mol. Genet. 4, 1–8.PubMedGoogle Scholar
  6. 6.
    Fortune, M. T., Vassilopoulos, C., Coolbaugh, M. I., et al. (2000) Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability. Hum. Mol. Genet. 9, 439–445.PubMedCrossRefGoogle Scholar
  7. 7.
    Kennedy, L. and Shelbourne, P. F. (2000) Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington’s disease? Hum. Mol. Genet. 9, 2539–2544.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Monckton, D. G., Siciliano, M. J., et al. (2002) Age and insertion site dependence of repeat number instability of a human DM1 transgene in individual mouse sperm. Hum. Mol. Genet. 11, 791–798.PubMedCrossRefGoogle Scholar
  9. 9.
    Sharma, R., Bhatti, S., Gomez, M., et al. (2002) The GAA triplet-repeat sequence in Friedreich ataxia shows a high level of somatic instability in vivo, with a significant predilection for large contractions. Hum. Mol. Genet. 11, 2175–2187.PubMedCrossRefGoogle Scholar
  10. 10.
    Sambrook, J. and Russell, D. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  11. 11.
    Monckton, D. G., Cayuela, M. L., Gould, F. K., et al. (1999) Very large (CAG)n DNA repeat expansions in the sperm of two spinocerebellar ataxia type 7 males. Hum. Mol. Genet. 8, 2473–2478.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Mário Gomes-Pereira
    • 1
  • Sanjay I. Bidichandani
    • 2
  • Darren G. Monckton
    • 3
  1. 1.Division of Molecular Genetics, Institute of Biomedical and Life Sciences, Anderson College ComplexUniversity of GlasgowGlasgowUK
  2. 2.Departments of Biochemistry & Molecular Biology and PediatricsUniversity of Oklahoma Health Sciences CenterOklahoma City
  3. 3.Division of Molecular Genetics, Institute of Biomedical and Life SciencesUniversity of Glasgow, Anderson College ComplexGlasgowUK

Personalised recommendations