DNA Adducts With Chlorophyll and Chlorophyllin As Antimutagenic Agents

Synthesis, Stability, and Structural Features
  • Heidar-Ali Tajmir-Riahi
  • Jean-Francois Neault
  • Stavroula Diamantoglou
Part of the Methods In Molecular Biology™ book series (MIMB, volume 274)


Porphyrins and their metal derivatives are strong DNA binders with association constants of 105 M −1 to 107 M −1. Some of these compounds have been used for radiation sensitization therapy of cancer and are targeted to interact with cellular DNA. Chlorophyll (CHL) and chlorophyllin (CHLN), a food-grade derivative of chlorophyll, the ubiquitous green plant pigment widely consumed by humans, are potent inhibitors of experimental carcinogenesis. The aim of this report was to examine the interaction of calf-thymus DNA with CHL and CHLN in aqueous solution at physiological pH, with pigment/DNA(phosphate) molar ratios (r) of 1/80 to 1/2. Fourier transform infrared (FTIR) difference spectroscopic method was used to determine the pigment binding mode, binding constant, sequence selectivity, DNA secondary structure and structural variations of the pigment-DNA complexes in aqueous solution.

Spectroscopic evidence showed that chlorophyll is an external DNA binder with no affinity toward DNA intercalation. CHL bindings are through the backbone PO2 group and the guanine N-7 site of the G-C base pair (major groove) with overall binding constant of K=1.13×104 M −1 CHLN binds DNA via intercalative mode into the G-C and A-T-rich regions with a minor perturbation of the backbone PO2 group with overall binding constant K=3.56×103 M −1. However, The CHL distributions are 60% with the backbone PO2 group and 20% with the G-C base pairs, whereas CHLN intercalation is 25% with A-T and 15% with G-C base pairs. A partial reduction of B-DNA structure in favor of A-DNA occurs upon CHL and CHLN complexation.

Key Words

DNA chlorophyllin chlorophyll antimutagen drug binding mode binding constant conformation FTIR spectroscopy helix stability 


  1. 1.
    Doll, R. (1990) An overview of epidemiological evidence linking diet and cancer. Proc. Nutr. Soc. 49, 119–131.PubMedCrossRefGoogle Scholar
  2. 2.
    Doll, R. and Peto, R. (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United State today. J. Natl. Cancer Inst. 66, 1191–1308.PubMedGoogle Scholar
  3. 3.
    Farber, E. (1982) Chemical carcinogenesis, a biological perspective. Am. J. Pathol. 106, 271–296.PubMedGoogle Scholar
  4. 4.
    Wattenberg, L. W. (1990) Chemoprevention of cancer by naturally occurring and synthetic compounds. Proc. Am. Assoc. Cancer Res. 32, 461–463.Google Scholar
  5. 5.
    Hayatus, H., Arimoto, S., and Negishi, T. (1988) Dietary inhibitors of mutagenesis and carcinogenesis. Mutat. Res. 202, 429–446.CrossRefGoogle Scholar
  6. 6.
    Dragsted, L. O., Strube, M., and Larsen, J. C. (1993) Cancer protective factors in fruits and vegetables: Biochemical and biological background. Pharmacol. Toxicol. 72, 116–135.PubMedCrossRefGoogle Scholar
  7. 7.
    Lai, C., Butler, M. A., and Matney, T. S. (1980) Antimutagenic activities of common vegetables and their chlorophyll content. Mutat. Res. 77, 245–250.CrossRefGoogle Scholar
  8. 8.
    Kimm, S., Tchai, B., Park, S., and Kang, S. (1982) Antimutagenic activity of chlorophyll to direct and indirect-acting mutagens and its contents in the vegetables. Korean J. Biochem. 14, 1–7.Google Scholar
  9. 9.
    Kimm, S. and Park, S. (1982) Evidences for the existence of antimutagenic factors in edible plants. Korean J. Biochem. 14, 47–59.Google Scholar
  10. 10.
    Ong, T., Whong, W., Stewart, J., and Brockman, H. E. (1986) Chlorophyllin: a potent antimutagen against environmental and dietary mixtures. Mutat. Res. 173, 111–115.PubMedCrossRefGoogle Scholar
  11. 11.
    Harrison, J. W., Levin, S. E., and Trabin, B. (1954) The safety and fate of potassium sodium copper chlorophyllin. J. Am. Pharm. Assoc. 43, 722–737.Google Scholar
  12. 12.
    Young, R. W. and Beregi, J. S. (1980) Use of chlorophyllin in care of geriatric patients. J. Am. Geriatr. Soc. 28, 48–50.Google Scholar
  13. 13.
    Breinholt, V., Hendricks, J., Pereira, C., Arbogast, D., and Bailey, G. (1995) Dietary chlorophyllin is a potent inhibitor of aflatoxin B1 hepatocarcinogenesis in rainbow trout. Cancer Res. 55, 57–62.PubMedGoogle Scholar
  14. 14.
    Newmark, H. L. (1984) A hypotesis for dietary components as blocking agents of chemical carcinogenesis: plant phenolics and pyrrole pigments. Nutr. Cancer 6, 58–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Arimoto, S., Negishi, T., and Hayatsu, H. (1980) Inhibitory effects of hemin on mutagenic activities of carcinogens. Cancer Lett. 11, 29–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Dashwood, R. H., Breinholt, V., and Bailey, G. (1991) Chemoprotective properties of chlorophyllin: inhibition of aflatoxin B1 (AF B1)-DNA binding in vivo and antimutagenic activity against AFB1 and two heterocyclic amines in salmonella mutagenicity assay. Carcinogenesis (Lond.) 12, 939–942.CrossRefGoogle Scholar
  17. 17.
    Romert, L., Curvall, M., and Jenssen, D. (1992) Chlorophyllin is both a positive and negative modifier of mutagenicity. Mutagenesis 7, 349–355.PubMedCrossRefGoogle Scholar
  18. 18.
    Dashwood, R. H. (1992) Protection by chlorophyllin against covalent binding of 2-amino-3-methylimidazol[4,5-f] quinoline to rat liver DNA. Carcinogenesis (Lond.) 13, 113–118.CrossRefGoogle Scholar
  19. 19.
    Neault, J. F. and Tajmir-Riahi, H. A. (1997) RNA-diethylstilbestrol interaction studied by FTIR difference spectroscopy. J. Biol. Chem. 272, 8901–8904.PubMedCrossRefGoogle Scholar
  20. 20.
    Tajmir-Riahi, H. A., Ahmad, R., Naoui, M., and Diamantoglou, S. (1995) The effect of HCl on the solution structure of calf-thymus DNA: a comparative study of DNA denaturation by proton and metal cations using Fourier transform infrared difference spectroscopy. Biopolymers 35, 493–501.PubMedCrossRefGoogle Scholar
  21. 21.
    Neault, J. F. and Tajmir-Riahi. H. A. (1996) Diethylstilbestrol-DNA interaction studied by Fourier transform infrared and Raman spectroscopy. J. Biol. Chem. 271, 8140–8143.PubMedCrossRefGoogle Scholar
  22. 22.
    Neault, J. F., Naoui, M., Manfait, M., and Tajmir-Riahi, H. A. (1995) Aspirin-DNA interaction studied by FTIR and laser Raman difference spectroscopy. FEBS Lett. 382, 26–30.CrossRefGoogle Scholar
  23. 23.
    Neault, J. F., Naoui, M., and Tajmir-Riahi, H. A. (1995) DNA-drug interaction. The effects of vitamin C on the solution structure of calf-thymus DNA studied by FTIR and laser Raman spectroscopy. J. Biomol. Struct. Dyn. 13, 387–397.PubMedGoogle Scholar
  24. 24.
    Tajmir-Riahi, H. A., Naoui, M., and Diamantoglou, S. (1994) DNA-Carbohydrate interaction. The effects of mono-and disaccharides on the solution structure of calf-thymus-DNA. J. Biomol. Struct. Dyn. 12, 217–234.PubMedGoogle Scholar
  25. 25.
    Tajmir-Riahi, H. A., Neault, J. F., and Naoui, M. (1995) Does DNA acid fixation produce left-handed Z structure? FEBS Lett. 370, 105–108.PubMedCrossRefGoogle Scholar
  26. 26.
    Tajmir-Riahi, H. A. (1991) Interaction of guanylic acid with Mg(II), Ca(II), Sr(II) and Ba(II) ions in the crystalline solid and aqueous solution. Evidence for the ribose C2′-endo/anti, and C3′-endo/anti conformational changes. Biopolymers 31, 101–108.PubMedCrossRefGoogle Scholar
  27. 27.
    Ahmed, A., Tajmir-Riahi, H. A., and Carpentier, R. (1995) A quantitative secondary structure analysis of the 33 kDa extrinsic polypeptide of photosystem II by FTIR spectroscopy. FEBS Lett. 363, 65–68.PubMedCrossRefGoogle Scholar
  28. 28.
    Alex, S. and Dupuis, P. (1989) FT-IR and Raman investigation of cadmium binding by DNA. Inorg. Chim. Acta 157, 271–281.CrossRefGoogle Scholar
  29. 29.
    Keller, P. B. and Hartman, K. A. (1986) The effect of ionic environment and mercury (II) binding on the alternative structure of DNA. An infrared spectroscopic study. Spectrochim. Acta 42A, 299–306.Google Scholar
  30. 30.
    Loprete, D. M. and Hartman, K. A. (1993) Conditions for stability of the B, C, Z structural forms of poly(dG-dC) in the presence of lithium, potassium, magnesium, calcium and zinc cations. Biochemistry 32, 4077–4082.PubMedCrossRefGoogle Scholar
  31. 31.
    Starikov, E. B., Semenov, M. A., Maleev, V. Y., and Gasan, A. I. (1991) Evidential study of correlated events in biochemistry: physicochemical machanisms of nucleic acid hydration as revealed by factor analysis. Biopolymers 31, 255–273.CrossRefGoogle Scholar
  32. 32.
    Gessner, R. V., Quigley, G. J., Wang, A. H.-J., Van der Marel, G. A., Van Boom, J. H., and Rich, A. (1985) Structural basis for stabilization of Z-DNA by cobalt hexammine and magnesium cations. Biochemistry 24, 237–240.PubMedCrossRefGoogle Scholar
  33. 33.
    Bhattacharyya, R. G., Nayak, K. K., and Chakrabarty, A. N. (1988) Interaction of MgATP2− with DNA: assessment of metal binding sites and DNA conformations by spectroscopic andthermal denaturationstudies. Inorg. Chim. Acta 153, 79–86.CrossRefGoogle Scholar
  34. 34.
    Langlais, M., Tajmir-Riahi, H. A., and Savoie, R. (1990) Raman spectroscopic study of the effects of Ca2+, Mg2+, Zn2+, and Cd2+ ons on calf-thymus DNA: binding sites and conformational changes. Biopolymers 30, 743–752.PubMedCrossRefGoogle Scholar
  35. 35.
    Tajmir-Riahi, H. A. (1990) Interaction of deoxyguanylic acid with alkaline earth metal ions. Evidence for deoxyribose C3′-endo/anti, O4′-endo/anti and C2′-endo/anti sugar conformational transitions. J. Biomol. Struct. Dyn. 8, 303–313.PubMedGoogle Scholar
  36. 36.
    Tajmir-Riahi, H. A. (1990) Interaction of adenylic acid with alkaline earth metal ions in the crystalline solid and aqueous solution. Evidence for the sugar C2′-endo/anti, C3′-endo/anti and C4′-exo/anti conformational changes. Biochim. Biophys. Acta 1087, 49–54.PubMedGoogle Scholar
  37. 37.
    Tajmir-Riahi, H. A., Langlais, M., and Savoie, R. (1988) A laser Raman spectroscopic study of the interaction of methylmercury cation with AMP, ADP and ATP. Biochim. Biophys. Acta 956, 211–216.PubMedCrossRefGoogle Scholar
  38. 38.
    Tuite, E. and Kelly, J. M. (1995) The interaction of methylene blue, azure B, and thionine with DNA: formation of complexes with polynucleotides and mononucleotides as model systems. Biopolymers 35, 419–433.CrossRefGoogle Scholar
  39. 39.
    Tuite, E. and Norden, B. (1994) Sequence-specific interactions of methylene blue with polynucleotides and DNA: a spectroscopic study. J. Am. Chem. Soc. 116, 7548–7556.CrossRefGoogle Scholar
  40. 40.
    Ahmad, R., Arakawa, H., and Tajmir-Riahi, H. A. (2003) A comparative study of DNA complexation with Mg(II) and Ca(II). Major and minor grooves bindings. Biophy. J. 84, 2460–2466.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Heidar-Ali Tajmir-Riahi
    • 1
  • Jean-Francois Neault
    • 1
  • Stavroula Diamantoglou
    • 1
  1. 1.Département de Chimie-Bioloige (GREIB)Université du Québec à Trois-RivièresQuébecCanada

Personalised recommendations