Isolation of CP43 and CP47 Photosystem II Proximal Antenna Complexes From Plants

  • Rafael Picorel
  • Miguel Alfonso
  • Michael Seibert
Part of the Methods In Molecular Biology™ book series (MIMB, volume 274)


A single-column method to purify the CP43 and CP47 pigment-protein complexes of photosystem (PS)II from higher plants is presented. To validate the isolation procedure, three different species were used (Spinacea oleracea, Beta vulgaris, and Glycine max), and the procedure worked similarly with all three. Oxygen-evolving core complex obtained from highly enriched PSII membrane fragments were used as the starting material. The core complex is treated with the chaotropic agent LiClO4 and the nonionic detergent n-dodecyl β-D-maltoside. After dialysis against buffer with no detergent or chaotropic agent, the solubilized material is separated by weak anion-exchange chromatography using a TSK-GEL Toyopearl DEAE 650s column. CP43 complex does not bind to the column and elutes with the first pigmented fractions. When the eluate becomes colorless, the column is subjected to a 0–175 mM LiClO4 linear gradient. The main pigment elution band corresponds to CP47 complex. The last pigmented elution band contains both reaction center-CP47 and reaction center complexes.

Key Words

Anion-exchange chromatography CP43 CP47 isolation photosystem II pigment-protein complexes 


  1. 1.
    Zouni, A., Witt, H. T., Kern, J., et al. (2002) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743.CrossRefGoogle Scholar
  2. 2.
    Kamiya, N. and Shen, J. R. (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc. Natl. Acad. Sci. USA 100, 98–1003.PubMedCrossRefGoogle Scholar
  3. 3.
    Bricker, T. M. and Frankel, L. K. (2002) The structure and function of CP47 and CP43 in photosystem II. Photosynth. Res. 72, 131–146.PubMedCrossRefGoogle Scholar
  4. 4.
    Alfonso, M., Montoya, G., Cases, R., Rodríguez, R., and Picorel, R. (1994) Core antenna complexes, CP43 and CP47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry 33, 10,494–10,500.PubMedCrossRefGoogle Scholar
  5. 5.
    Jankowiak, R., Zazubovich, V., Rätsep, M., et al. (2000) The CP43 core antenna complex of photosystem II possesses two quasi-degenerate and weakly coupled Qx-trap states. J. Phys. Chem. 104, 11,805–11,815.Google Scholar
  6. 6.
    Groot, M. L., Frese, R. N., de Weerd, F. L., et al. (1999) Spectroscope properties of the CP43 core antenna protein of photosystem II. Biophys. J. 77, 3328–3340.PubMedCrossRefGoogle Scholar
  7. 7.
    Chang, H. C., Jankowiak, R., Yocum, C. F., et al. (1994) Exciton level structure and dynamics in the CP47 antenna complex of photosystem II. J. Phys. Chem. 98, 7717–7724.CrossRefGoogle Scholar
  8. 8.
    Gogorcena, Y., Molias, N., Larbi, A., Abadía, J., and AbadÍia, A. (2001) Characterization of the responses of cork oak (Quercus suber) to iron deficiency. Tree Physiol. 21, 1335–1340.PubMedGoogle Scholar
  9. 9.
    Shan, J., Wang, J., Ruan, X., et al. (2001) Changes of absorption spectra during heat-induced denaturation of photosystem II core antenna complexes CP43 and CP47: revealing the binding states of chlorophyll molecules in these two complexes. Biochim. Biophys. Acta 1504, 396–408.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Rafael Picorel
    • 1
  • Miguel Alfonso
    • 1
  • Michael Seibert
    • 2
  1. 1.Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApdo. ZaragozaSpain
  2. 2.Basic Sciences CenterNational renewable Energy LaboratoryGolden

Personalised recommendations