Fiber-FISH: Fluorescence In Situ Hybridization on Stretched DNA

  • Klaus Ersfeld
Part of the Methods in Molecular Biology™ book series (MIMB, volume 270)


High-resolution fluorescence in situ hybridization (FISH) on deproteinized, stretched DNA prepared by in situ extraction of whole cells immobilized on microscope glass slides allows the visualization of individual genes or other small DNA elements on chromosomes with a resolution of approx 1000 bp. Applications of fiber-FISH range from the determination of numbers of repetitive genes to establishing the physical order of cloned DNA fragments along continuous sections of individual chromosomes. Particularly in organisms with relatively small and gene dense genomes, such as protozoan parasites, fiber-FISH can easily be used as a complementary technique to classical in vitro mapping approaches.

Key Words

Digital microscopy DNA fibers genome mapping repetitive DNA stretched DNA 


  1. 1.
    Wiegant, J., Kalle, W., Mullenders, L., et al. (1992) High-resolution in situ hybridization using DNA halo preparations. Hum. Mol. Genet. 1, 587–591.PubMedCrossRefGoogle Scholar
  2. 2.
    Parra, I. and Windle, B. (1993) High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat. Genet. 5, 17–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Fidlerova, H., Senger, G., Kost, M., et al. (1994) Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet. Cell Genet. 65, 203–205.PubMedCrossRefGoogle Scholar
  4. 4.
    Tocharoentanaphol, C., Cremer, M., Schrock, E., et al. (1994) Multicolor fluorescence in situ hybridization on metaphase chromosomes and interphase halo-preparations using cosmid and YAC clones for the simultaneous high-resolution mapping of deletions in the dystrophin gene. Hum. Genet. 93, 229–235.PubMedCrossRefGoogle Scholar
  5. 5.
    Florijn, R. J., Bonden, L. A. J., Vrolijk, H., et al. (1995) High-resolution DNA fiber-FISH for genomic DNA mapping and color bar-coding of large genes. Hum. Mol. Genet. 4, 831–836.PubMedCrossRefGoogle Scholar
  6. 6.
    Rosenberg, C., Florijn, R. J., Van De Rijke, F. M., et al. (1995) High resolution DNA Fiber-fish on yeast artificial chromosomes: direct visualization of DNA replication. Nat. Genet. 10, 477–479.PubMedCrossRefGoogle Scholar
  7. 7.
    Mann, S. M., Burkin, D. J., Grin, D. K., et al. (1997) A fast, novel approach for DNA Fiber-fluorescence in situ hybridization analysis. Chromosome Res. 5, 145–147.PubMedCrossRefGoogle Scholar
  8. 8.
    Shiels, C., Coutelle, C., and Huxley, C. (1997) Analysis of ribosomal and alphoid repetitive DNA by fiber-FISH. Cytogenet. Cell Genet. 76, 20–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Ersfeld, K., Asbeck, K., and Gull, K. (1998) Direct visualisation of individual gene organisation in Trypanosoma brucei by high-resolution in situ hybridisation. Chromosoma 107, 237–240.PubMedCrossRefGoogle Scholar
  10. 10.
    Heiskanen, M., Karhu, R., Hellsten, E., et al. (1994) High-resolution mapping using fluorescence in situ hybridization to extended DNA fibers prepared from agarose-embedded cells. Biotechniques 17, 928–933.PubMedGoogle Scholar
  11. 11.
    Weier, H. U. G., Wang, M., Mullikin, J. C., et al. (1995) Quantitative DNA fiber mapping. Hum. Mol. Genet. 4, 1903–1910.PubMedCrossRefGoogle Scholar
  12. 12.
    Heiskanen, M., Peltonen, L., and Palotie, A. (1996) Visual mapping by high resolution FISH. Trends Genet. 12, 379–382.PubMedCrossRefGoogle Scholar
  13. 13.
    Erdel, M., Hubalek, M., Lingenhel, A., et al. (1999) Counting the repetitive kringle-IV repeats in the gene encoding human apolipoprotein(a) by Fiber-FISH. Nat. Genet. 21, 357–358.PubMedCrossRefGoogle Scholar
  14. 14.
    Tsuchiya, D. and Taga, M. (2001) Application of Fiber-FISH (fluorescence in situ hybridization) to filamentous fungi: visualization of the rRNA gene cluster of the ascomycete Cochliobolus heterostrophus. Microbiology-SGM 147, 1183–1187.Google Scholar
  15. 15.
    Vogelstein, B., Pardoll, D. M., and Coffey, D. S. (1980) Supercoiled loops and eucaryotic DNA replication. Cell 22, 79–85.PubMedCrossRefGoogle Scholar
  16. 16.
    Eckwall, K. and Partridge, J. F. (1999) Fission yeast chromosome analysis: fluorescence in situ hybridization (FISH) and chromatin immunoprecipitation (CHIP), in Chromosome Structural Analysis: A Practical Approach (Bickmore, W.A., ed.), Oxford University Press, Oxford, UK, pp. 39–57.Google Scholar
  17. 17.
    Ersfeld, K. and Stone, E. (2000) The simultaneous detection of proteins and DNA in cells, in Protein Localization by Fluorescence Microscopy: A Practical Approach (Allan, V., ed.), Oxford University Press, Oxford, UK, pp. 51–66Google Scholar

Copyright information

© Humana Press Inc., Totowa,NJ 1994

Authors and Affiliations

  • Klaus Ersfeld
    • 1
  1. 1.Department of Biological SciencesUniversity of HullHullUK

Personalised recommendations