Assaying the Spindle Checkpoint in the Budding Yeast Saccharomyces cerevisiae

  • Christopher M. Yellman
  • Daniel J. Burke
Part of the Methods in Molecular Biology™ book series (MIMB, volume 280)

Abstract

The spindle checkpoint is assayed in Saccharomyces cerevisiae using several criteria. Sensitivity to benzimidazole drugs is assayed in cells grown in liquid medium and cells grown on solid medium on petri plates. Cell cycle delays are measured using cells synchronized by treatment with mating pheromone α-factor, and the population is monitored by flow cytometry measuring DNA content in cells. There are two different transitions that are monitored, and cytological assays for individual cells and biochemical assays for populations of cells are presented. The metaphase to anaphase transition is assayed by monitoring sister chromatid separation using GFP-tagged chromosomes, Pds1 stability using immunofluorescence, and Mcd1/Scc1 association with chromatin using chromosome spreads. Pds1 and Mcd1/Scc1 stability is measured in populations by Western blots. The exit from mitosis is monitored by Cdc14 immunofluorescence and Clb2 Western blots.

Key Words

Mitosis spindle checkpoint regulation genetics cytology biochemistry flow cytometry 

References

  1. 1.
    Burke, D. J. (2000) Complexity in the spindle checkpoint. Curr. Opin. Genet. Dev. 10, 26–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Nicklas, R. B. (1997) How cells get the right chromosomes. Science 275, 632–637.PubMedCrossRefGoogle Scholar
  3. 3.
    Cleveland, D. W., Mao, Y., and Sullivan, K. F. (2003) Centromeres and kinetochores. From epigenetics to mitotic checkpoint signaling. Cell 112, 407–421.PubMedCrossRefGoogle Scholar
  4. 4.
    Millband, D. N., Campbell, L., and Hardwick, K. G. (2002) The awesome power of multiple model systems: interpreting the complex nature of spindle checkpoint signaling. Trends Cell Biol. 12, 205–209.PubMedCrossRefGoogle Scholar
  5. 5.
    Yu, H. (2002) Regulation of APC-Cdc20 by the spindle checkpoint. Curr. Opin. Cell Biol. 14, 706–714.PubMedCrossRefGoogle Scholar
  6. 6.
    Hoyt, M. A., Totis, L., and Roberts, B. T. (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517.PubMedCrossRefGoogle Scholar
  7. 7.
    Li, R. and Murray, A. W. (1991) Feedback control of mitosis in budding yeast. Cell 66, 519–531.PubMedCrossRefGoogle Scholar
  8. 8.
    Burke, D., Dawson, D., and Stearns, T. (2003) Methods in Yeast Genetics. A Cold Spring Harbor Laboratory Manual. 2000 Edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  9. 9.
    Li, R. (1999) Bifurcation of the mitotic checkpoint pathway in budding yeast. Proc. Natl. Acad. Sci. USA 96, 4989–4994.PubMedCrossRefGoogle Scholar
  10. 10.
    Alexandru, G., Zachariae, W., Schleiffer, A., and Nasmyth, K. (1999) Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J. 18, 2707–2721.PubMedCrossRefGoogle Scholar
  11. 11.
    Straight, A. F., Belmont, A. S., Robinett, C. C., and Murray, A. W. (1996) GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608.PubMedCrossRefGoogle Scholar
  12. 12.
    Straight, A. F., Marshall, W. F., Sedat, J. W., and Murray, A. W. (1997) Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574–578.PubMedCrossRefGoogle Scholar
  13. 13.
    Nabeshima, K., Nakagawa, T., Straight, A. F., et al. (1998) Dynamics of centromeres during metaphase-anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle. Mol. Biol. Cell 9, 3211–3225.PubMedGoogle Scholar
  14. 14.
    Minshull, J., Straight, A., Rudner, A. D., Dernburg, A. F., Belmont, A., and Murray, A. W. (1996) Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr. Biol. 6, 1609–1620.PubMedCrossRefGoogle Scholar
  15. 15.
    Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V., and Nasmyth, K. (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386.PubMedCrossRefGoogle Scholar
  16. 16.
    Uhlmann, F., Lottspeich, F., and Nasmyth, K. (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Jin, Q., Trelles-Sticken, E., Scherthan, H., and Loidl, J. (1998) Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J. Cell Biol. 141, 21–29.PubMedCrossRefGoogle Scholar
  18. 18.
    Kushnirov, V. V. (2000) Rapid and reliable protein extraction from yeast. Yeast 16, 857–860.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Christopher M. Yellman
    • 1
  • Daniel J. Burke
    • 1
  1. 1.Department of Biochemistry and Molecular GeneticsUniversity of Virginia Medical CenterCharlottesville

Personalised recommendations