Using Retroviruses to Express Genes in Primary Megakaryocyte Lineage Cells

  • Meenakshi Gaur
  • George J. Murphy
  • Jonathan Frampton
  • Andrew D. Leavitt
Part of the Methods in Molecular Biology™ book series (MIMB, volume 273)


Megakaryocytes in adult human bone marrow are estimated to constitute approx 0.4% of the total marrow cells (1), and our experience suggests that fewer than 0.5% of low-density nucleated murine bone marrow cells express the megakaryocyte-lineage marker CD41 (integrin αIIb). Historically, the infrequent occurrence of megakaryocyte-lineage cells in bone marrow has been a significant obstacle to the procurement of primary megakaryocyte-lineage cells for biological studies. However, currently available conditions allow one to expand these cells in culture. In this chapter we describe protocols for using retroviruses to selectively infect early megakaryocyte-lineage cells and to infect mature megakaryocytes. The protocols allow one to study the effect of specific gene products on lineage development and biological functions of these primary cells. A basic understanding of retroviruses and the retrovirus life cycle is assumed (for review, seerefs.2,3).


  1. 1.
    Levine, R. F. (1980) Isolation and characterization of normal human megakaryocytes. Br. J. Haematol. 45, 487–497.PubMedCrossRefGoogle Scholar
  2. 2.
    Coffin, J. M., Hughes, S. H., and Varmus, H. E., eds. (1977) Retroviruses. Cold Spring Harbor Laboratory Press, Plainville, NY.Google Scholar
  3. 3.
  4. 4.
    Miller, A. D. (1997) Retroviruses, in Retroviruses (Coffin, J. M., Hughes, S. H., and Varmus, H. E., eds.), Cold Spring Harbor Press, Plainville, NY, pp. 437–474.Google Scholar
  5. 5.
    O’Doherty, U., Swiggard, W. J., and Malim, M. H. (2000) Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J. Virol. 74, 10,074–10,080.PubMedCrossRefGoogle Scholar
  6. 6.
    Burstein, S. A., Dubart, A., Norol, F., Debili, N., Friese, P., Downs, T., et al. (1999) Expression of a foreign protein in human megakaryocytes and platelets by retrovirally mediated gene transfer. Exp. Hematol. 27, 110–116.PubMedCrossRefGoogle Scholar
  7. 7.
    Wilcox, D. A., Olsen, J. C., Ishizawa, L., Griffith, M., and White, G. C., 2nd (1999) Integrin αIIb promoter-targeted expression of gene products in megakaryocytes derived from retro-virus-transduced human hematopoietic cells. Proc. Natl. Acad. Sci. USA 96, 9654–9659.PubMedCrossRefGoogle Scholar
  8. 8.
    Wilcox, D. A., Olsen, J. C., Ishizawa, L., Bray, P. F., French, D. L., Steeber, D. A., et al. (2000) Megakaryocyte-targeted synthesis of the integrin β3-subunit results in the phenotypic correction of Glanzmann thrombasthenia. Blood 95, 3645–3651.PubMedGoogle Scholar
  9. 9.
    Lecine, P., Italiano, J. E., Jr., Kim, S. W., Villeval, J. L., and Shivdasani, R. A. (2000) Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood 96, 1366–1373.PubMedGoogle Scholar
  10. 10.
    Hawley, R. G. (1994) High-titer retroviral vectors for efficient transduction of functional genes into murine hematopoietic stem cells. Ann. NY Acad. Sci. 716, 327–330.PubMedCrossRefGoogle Scholar
  11. 11.
    Baccini, V., Roy, L., Vitrat, N., Chagraoui, H., Sabri, S., Le Couedic, J. P., et al. (2001) Role of p21(Cip1/Waf1) in cell-cycle exit of endomitotic megakaryocytes. Blood 98, 3274–3282.PubMedCrossRefGoogle Scholar
  12. 12.
    Young, J. A., Bates, P., and Varmus, H. E. (1993) Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J. Virol. 67, 1811–1816.PubMedGoogle Scholar
  13. 13.
    Bates, P., Young, J. A., and Varmus, H. E. (1993) A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74, 1043–1051.PubMedCrossRefGoogle Scholar
  14. 14.
    Federspiel, M. J., Bates, P., Young, J. A., Varmus, H. E., and Hughes, S. H. (1994) A system for tissue-specific gene targeting: transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors. Proc. Natl. Acad. Sci. USA 91, 11,241–11,245.PubMedCrossRefGoogle Scholar
  15. 15.
    Murphy, G. J. and Leavitt, A. D. (1999) A model for studying megakaryocyte development and biology. Proc. Natl. Acad. Sci. USA 96, 3065–3070.PubMedCrossRefGoogle Scholar
  16. 16.
    Gaur, M., Murphy, G. J., deSauvage, F. J., and Leavitt, A. D. (2001) Characterization of Mpl mutants using primary megakaryocyte-lineage cells from mpl ―/― mice: a new system for Mpl structure-function studies. Blood 97, 1653–1661.PubMedCrossRefGoogle Scholar
  17. 17.
    Quintrell, N., Hughes, S. H., Varmus, H. E., and Bishop, J. M. (1980) Structure of viral DNA and RNA in mammalian cells infected with avian sarcoma virus. J. Mol. Biol. 143, 363–393.PubMedCrossRefGoogle Scholar
  18. 18.
    Federspiel, M. J. and Hughes, S. H. (1997) Retroviral gene delivery. Meth. Cell Biol. 52, 179–214.CrossRefGoogle Scholar
  19. 19.
    Boerkoel, C. F., Federspiel, M. J., Salter, D. W., Payne, W., Crittenden, L. B., Kung, H. J., et al. (1993) A new defective retroviral vector system based on the Bryan strain of Rous sarcoma virus. Virology 195, 669–679.PubMedCrossRefGoogle Scholar
  20. 20.
    Lewis, B. C., Chinnasamy, N., Morgan, R. A., and Varmus, H. E. (2001) Development of an avian leukosis-sarcoma virus subgroup A pseudotyped lentiviral vector. J. Virol. 75, 9339–9344.PubMedCrossRefGoogle Scholar
  21. 21.
    Zufferey, R., Dull, T., Mandel, R. J., Bukovsky, A., Quiroz, D., Naldini, L., et al. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880.PubMedGoogle Scholar
  22. 22.
    Kingston, R. E., Chen, C. A., Okayama, H., and Rose, J. K. (2003) Transfection of DNA into mammalian cells, in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G, Smith, J. A., et al., eds.), Vol. 2. John Wiley & Sons, Inc., New York, pp. 9.1.1–9.1.11.Google Scholar
  23. 23.
    Yee, J. K., Friedmann, T., and Burns, J. C. (1994) Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol. 43, 99–112.PubMedCrossRefGoogle Scholar
  24. 24.
  25. 25.
    Zennou, V., Serguera, C., Sarkis, C., Colin, P., Perret, E., Mallet, J., et al. (2001) The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nat. Biotechnol. 19, 446–450.PubMedCrossRefGoogle Scholar
  26. 26.
    Sirven, A., Pflumio, F., Zennou, V., Titeux, M., Vainchenker, W., Coulombel, L., et al. (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96, 4103–4110.PubMedGoogle Scholar
  27. 27.
    Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M., and Naldini, L. (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet. 25, 217–222.PubMedCrossRefGoogle Scholar
  28. 28.
    Donello, J. E., Loeb, J. E., and Hope, T. J. (1998) Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J. Virol. 72, 5085–5092.PubMedGoogle Scholar
  29. 29.
    Zufferey, R., Donello, J. E., Trono, D., and Hope, T. J. (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892.PubMedGoogle Scholar
  30. 30.
    Ody, C., Vaigot, P., Quéré, P., Imhof, B. A., and Corbel, C. (1999) Glycoprotein IIb-IIIa is expressed on avian multilineage hematopoietic progenitor cells. Blood 93, 2898–2906.PubMedGoogle Scholar
  31. 31.
    Tronik-Le Roux, D., Roullot, V., Schweitzer, A., Berthier, R., and Marguerie, G. (1995) Suppression of erythro-megakaryocytopoiesis and the induction of reversible thrombocytopenia in mice transgenic for the thymidine kinase gene targeted by the platelet glycoprotein alpha IIb promoter [published erratum appears in J. Exp. Med. 1995 Oct 1;1182(4):1177]. J. Exp. Med. 181, 2141–2151.Google Scholar
  32. 32.
    Tropel, P., Roullot, V., Vernet, M., Poujol, C., Pointu, H., Nurden, P., et al. (1997) A 2.7-kb portion of the 5′ flanking region of the murine glycoprotein alpha IIb gene is transcriptionally active in primitive hematopoietic progenitor cells. Blood 90, 2995–3004.PubMedGoogle Scholar
  33. 33.
    Fujita, H., Hashimoto, Y., Russell, S., Zieger, B., and Ware, J. (1998) In vivo expression of murine platelet glycoprotein Ibα, Blood 92, 488–495.PubMedGoogle Scholar
  34. 34.
    Ware, J., Hashimoto, Y., Zieger, B., and Russell, S. (1996) Controlling elements of platelet glycoprotein Ibα expression. C. R. Acad. Sci. III 319, 811–817.PubMedGoogle Scholar
  35. 35.
    Ware, J., Russell, S. R., Marchese, P., and Ruggeri, Z. M. (1993) Expression of human platelet glycoprotein Iba in transgenic mice. J. Biol. Chem. 268, 8376–8382.PubMedGoogle Scholar
  36. 36.
    Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.PubMedCrossRefGoogle Scholar
  37. 37.
    Hatziioannou, T. and Goff, S. P. (2001) Infection of nondividing cells by Rous sarcoma virus. J. Virol. 75, 9526–9531.PubMedCrossRefGoogle Scholar
  38. 38.
    Mazur, E. M., Cohen, J. L., Bogart, L., Mufson, R. A., Gesner, T. G, Yang, Y. C., et al. (1988) Recombinant gibbon interleukin-3 stimulates megakaryocyte colony growth in vitro from human peripheral blood progenitor cells. J. Cell. Physiol. 136, 439–446.PubMedCrossRefGoogle Scholar
  39. 39.
    Dolzhanskiy, A., Hirst, J., Basch, R. S., and Karpatkin, S. (1998) Complementary and antagonistic effects of IL-3 in the early development of human megakaryocytes in culture. Br. J. Haematol. 100, 415–426.PubMedCrossRefGoogle Scholar
  40. 40.
    Segal, G. M., Stueve, T., and Adamson, J. W. (1988) Analysis of murine megakaryocyte colony size and ploidy: effects of interleukin-3. J. Cell. Physiol. 137, 537–544.PubMedCrossRefGoogle Scholar
  41. 41.
    Veiby, O. P., Jacobsen, F. W., Cui, L., Lyman, S. D., and Jacobsen, S. E. (1996) The flt3 ligand promotes the survival of primitive hemopoietic progenitor cells with myeloid as well as B lymphoid potential. Suppression of apoptosis and counteraction by TNF-alpha and TGF-beta. J. Immunol. 157, 2953–2960.PubMedGoogle Scholar
  42. 42.
    Kobari, L., Giarratana, M. C., Poloni, A., Firat, H., Labopin, M., Gorin, N. C, et al. (1998) Flt 3 ligand, MGDF, Epo and G-CSF enhance ex vivo expansion of hematopoietic cell compartments in the presence of SCF, IL-3 and IL-6. Bone Marrow Transplant 21, 759–767.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Meenakshi Gaur
    • 1
  • George J. Murphy
    • 2
  • Jonathan Frampton
    • 3
  • Andrew D. Leavitt
    • 1
  1. 1.Departments of Laboratory and Internal MedicineUniversity of CaliforniaSan Francisco
  2. 2.Department of Genetics, Children’s HospitalHarvard Medical SchoolBoston
  3. 3.Department of AnatomyBirmingham University Medical SchoolBirminghamUK

Personalised recommendations