Signaling Receptors on Platelets and Megakaryocytes

  • Donna Woulfe
  • Jing Yang
  • Nicolas Prevost
  • Peter O’Brien
  • Ryan Fortna
  • Massimiliano Tognolini
  • Hong Jiang
  • Jie Wu
  • Lawrence F. Brass
Part of the Methods in Molecular Biology™ book series (MIMB, volume 273)

Abstract

Although the body of knowledge is far from complete, much has been learned about the receptors that enable circulating platelets to become activated at sites of vascular injury. A variety of approaches have been used to acquire this information, many of which are described elsewhere in this book. Far less is known about the receptors that are expressed on megakaryocytes, some of which play specific roles in megakaryocyte development and some of which mirror those that will subsequently be found on platelets. Our intent in this chapter is to provide a receptor-centric overview of platelet activation, followed by a very brief consideration of receptor function in megakaryocytes and megakaryoblastic cell lines. (Our apologies in advance to the authors of the many excellent studies that we have not cited in our effort to be brief.)

References

  1. 1.
    Clemetson, J. M., Polgar, J., Magnenat, E., Wells, T. N. C, and Clemetson, K. J. (1999) The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcαR and the natural killer receptors. J. Biol. Chem. 274, 29,019–29,024.PubMedGoogle Scholar
  2. 2.
    Poole, A., Gibbins, J. M., Turner, M., Van Vugt, M. J., Van de Winkel, J. G. J., Saito, T, et al. (1997) The Fc receptor gamma-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J. 16, 2333–2341.PubMedGoogle Scholar
  3. 3.
    Nieuwenhuis, H. K., Akkerman, J. W. N., Houdijk, W. P. M., and Sixma, J. J. (1985) Human blood platelets showing no response to collagen fail to express glycoprotein Ia. Nature 318, 470–472.PubMedGoogle Scholar
  4. 4.
    Sixma, J. J., Van Zanten, G. H., Huizinga E. G, Van der Plas, R. M., Verkley, M., Wu, Y. P., et al. (1997) Platelet adhesion to collagen: An update. Thromb. Haemost. 78, 434–438.PubMedGoogle Scholar
  5. 5.
    Nieswandt, B., Brakebusch, C, Bergmeier, W., Schulte, V, Bouvard, D., Mokhtari-Nejad, R., et al. (2001) Glycoprotein VI but not α2β1 integrin is essential for platelet interaction with collagen. EMBO J. 20, 2120–2130.PubMedGoogle Scholar
  6. 5a.
    Kato, K., Kanaji, T., Russell, S., Kunicki, T. J., Furihata, K., Kanaji, S., et al. (2003) The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. Blood 102, 1701–1707.PubMedGoogle Scholar
  7. 6.
    Nieswandt, B., Bergmeier, W., Schulte, V., Rackebrandt, K., Gessner, J. E., and Zirngibl, H. (2000) Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcRγ chain. J. Biol. Chem. 275, 23,998–24,002.PubMedGoogle Scholar
  8. 7.
    Gross, B. S., Lee, J. R., Clements, J. L., Turner, M., Tybulewicz, V L. J., Findell, P. R., et al. (1999) Tyrosine phosphorylation of SLP-76 is downstream of Syk following stimulation of the collagen receptor in platelets. J. Biol. Chem. 274, 5963–5971.PubMedGoogle Scholar
  9. 8.
    Hamm, H. E. (2001) How activated receptors couple to G proteins. Proc. Natl. Acad. Sci. USA 98, 4819–4821.PubMedGoogle Scholar
  10. 9.
    Gomes, I., Jordan, B. A., Grupta, A., Rios, C., Trapaidze, N., and Devi, L. A. (2001) G protein coupled receptor dimerization: implications in modulating receptor function. J. Mol. Med. 79, 226–242.PubMedGoogle Scholar
  11. 10.
    Jordan, B. A. and Devi, L. A. (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700.PubMedGoogle Scholar
  12. 11.
    Bünemann, M., Lee, K. B., Pals-Rylaarsdam, R., Roseberry, A. G, and Hosey, M. M. (1999) Desensitization of G-protein-coupled receptors in the cardiovascular system. Annu. Rev. Physiol. 61, 169–192.PubMedGoogle Scholar
  13. 12.
    Penn, R. B., Pronin, A. N., and Benovic, J. L. (2000) Regulation of G protein-coupled receptor kinases. Trends Cardiovasc. Med. 10, 81–89.PubMedGoogle Scholar
  14. 13.
    Lambright, D. G, Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E., and Sigler, P. B. (1996) The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379, 311–319.PubMedGoogle Scholar
  15. 14.
    Ford, C. E., Skiba, N. P., Bae, H. S., Daaka, Y. H., Reuveny, E., Shekter, L. R., et al. (1998) Molecular basis for interactions of G protein βγ subunits with effectors. Science 280, 1271–1274.PubMedGoogle Scholar
  16. 15.
    Hamm, H. E. (1998) The many faces of G protein signaling. J. Biol. Chem. 273, 669–672.PubMedGoogle Scholar
  17. 16.
    Gilman, A. G. (1987) G proteins: transducers of receptor-generated signals. Ann. Rev. Biochem. 56, 615–649.PubMedGoogle Scholar
  18. 17.
    Ross, E. M. and Wilkie, T. M. (2000) GTPase-activating proteins for heterotrimeric G proteins: Regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795–827.PubMedGoogle Scholar
  19. 18.
    Jantzen, H. M., Milstone, D. S., Gousset, L., Conley, P. B., and Mortensen, R. M. (2001) Impaired activation of murine platelets lacking Gα12. J. Clin. Invest. 108, 477–483.PubMedGoogle Scholar
  20. 19.
    Yang, J., Wu, J., Kowalska, M. A., Dalvi, A., Prevost, N., O’Brien, P. J., et al. (2000) Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered esponses to psychoactive drugs. Proc. Natl. Acad. Sci. USA 97, 9984–9989.PubMedGoogle Scholar
  21. 20.
    Woulfe, D., Jiang, H., Mortensen, R., Yang, J., and Brass, L. F. (2002) Activation of Rap1B by Gi family members in platelets. J. Biol. Chem. 277, 23,382–23,390.PubMedGoogle Scholar
  22. 21.
    Offermanns, S., Toombs, C. F., Hu, Y H., and Simon, M. I. (1997) Defective platelet activation in Gαq-deficient mice. Nature 389, 183–186.PubMedGoogle Scholar
  23. 22.
    Klages, B., Brandt, U., Simon, M. I., Schultz, G., and Offermanns, S. (1999) Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J. Cell Biol. 144, 745–754.PubMedGoogle Scholar
  24. 23.
    Offermanns, S. (2001) In vivo functions of heterotrimeric G-proteins: studies in Gα-deficient mice. Oncogene 20, 1635–1642.PubMedGoogle Scholar
  25. 24.
    Fukuhara, S., Chikumi, H., and Gutkind, J. S. (2001) RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 20, 1661–1668.PubMedGoogle Scholar
  26. 25.
    Haslam, R. J., Dickinson, N. T, and Jang, E. K. (1999) Cyclic nucleotides and phosphodiesterases in platelets. Thromb. Haemost. 82, 412–423.PubMedGoogle Scholar
  27. 26.
    Mills, D. C. B. and Smith, J. B. (1971) The influence on platelet aggregation of drugs that affect the accumulation of adenosine 3′:5′ cyclic monophosphate in platelets. Biochem. J. 121, 185.PubMedGoogle Scholar
  28. 27.
    Eigenthaler, M., Nolte, C., Halbrugge, M., and Walter, U. (1992) Concentration and regulation of cyclic nucleotides, cyclic-nucleotide-dependent protein kinases and one of their major substrates in human platelets. Estimating the rate of cAMP-regulated and cGMP-regulated protein phosphorylation in intact cells. Eur. J. Biochem. 205, 471–481.PubMedGoogle Scholar
  29. 28.
    Keularts, I. M. L. W., Van Gorp, R. M. A., Feijge, M. A. H., Vuist, W. M. J., and Heemskerk, J. W. M. (2000) α2A-adrenergic receptor stimulation potentiates calcium release in platelets by modulating cAMP levels. J. Biol. Chem. 275, 1763–1772.PubMedGoogle Scholar
  30. 29.
    Jantzen, H.-M., Milstone, D. S., Gousset, L., Conley, P. B., and Mortensen, R. M. (2001) Impaired activation of murine platelets lacking Gαi2. J. Clin. Invest. 108, 477–483.PubMedGoogle Scholar
  31. 30.
    Murata, T., Ushikubi, F., Matsuoka, T., Hirata, M., Yamasaki, A., Sugimoto, Y., et al. (1997) Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 388, 678–682.PubMedGoogle Scholar
  32. 31.
    Yang, J., Wu, J., Mortensen, R., Austin, S., Manning, D. R., Woulfe, D., et al. (2002) Signaling through Gi family members in platelets: redundancy and specificity in the regulation of adenylyl cyclase and other effectors. J. Biol. Chem. 277, 46,035–46,042.PubMedGoogle Scholar
  33. 32.
    Daniel, J. L., Dangelmaier, C, Jin, J. G, Kim, Y. B., and Kunapuli, S. P. (1999) Role of intracellular signaling events in ADP-induced platelet aggregation. Thromb. Haemost. 82, 1322–1326.PubMedGoogle Scholar
  34. 33.
    Daniel, J. L., Dangelmaier, C, Jin, J. G, Ashby, B., Smith, J. B., and Kunapuli, S. P. (1998) Molecular basis for ADP-induced platelet activation I. Evidence for three distinct ADP receptors on human platelets. J. Biol. Chem. 273, 2024–2029.PubMedGoogle Scholar
  35. 34.
    Jin, J. G., Daniel, J. L., and Kunapuli, S. P. (1998) Molecular basis for ADP-induced platelet activation II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J. Biol. Chem. 273, 2030–2034.PubMedGoogle Scholar
  36. 35.
    Fisher, G. J., Bakshian, S., and Baldassare, J. J. (1985) Activation of human platelets by ADP causes a rapid rise in cytosolic free calcium without hydrolysis of phosphati-dylinositol-4,5-bisphosphate. Biochem. Biophys. Res. Commun. 129, 958–964.PubMedGoogle Scholar
  37. 36.
    Daniel, J. L., Dangelmaier, C. A., Selak, M., and Smith, J. B. (1986) ADP stimulates IP3 formation in human platelets. FEBS Lett. 206, 299–303.PubMedGoogle Scholar
  38. 37.
    Léon, C., Hechler, B., Vial, C., Leray, C., Cazenave, J. P., and Gachet, C. (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakary-oblastic cells. FEBS Lett. 403, 26–30.PubMedGoogle Scholar
  39. 38.
    Hollopeter, G., Jantzen, H. M., Vincent, D., Li, G., England, L., Ramakrishnan, V., et al. (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409, 202–207.PubMedGoogle Scholar
  40. 39.
    Zhang, F. L., Luo, L., Gustafson, E., Lachowicz, J., Smith, M., Qiao, X. D., et al. (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J. Biol. Chem. 276, 8608–8615.PubMedGoogle Scholar
  41. 40.
    MacKenzie, A. B., Mahaut-Smith, M. P., and Sage, S. O. (1996) Activation of receptor-operated channels via P2X1 not P2T purinoreceptors in human platelets. J. Biol. Chem. 271, 2879–2881.PubMedGoogle Scholar
  42. 41.
    Vial, C., Hechler, B., Léon, C., Cazenave, J. P., and Gachet, C. (1997) Presence of P2X1 purinoceptors in human platelets and megakaryoblastic cell lines. Thromb. Haemost. 78, 1500–1504.PubMedGoogle Scholar
  43. 42.
    Sun, B., Li, J., Okahara, K., and Kambayashi, J. (1998) P2X1 purinoceptor in human platelets—Molecular cloning and functional characterization after heterologous expression. J. Biol. Chem. 273, 11,544–11,547.PubMedGoogle Scholar
  44. 43.
    Mahaut-Smith, M. P., Ennion, S. J., Rolf, M. G., and Evans, R. J. (2000) ADP is not an agonist at P2X1 receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br. J. Pharmacol. 131, 108–114.PubMedGoogle Scholar
  45. 44.
    Oury, C., Toth-Zsamboki, E., Thys, C., Tytgat, J., Vermylen, J., and Hoylaerts, M. F. (2001) The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen. Thromb. Haemost. 86, 1264–1271.PubMedGoogle Scholar
  46. 44a.
    Hechler, B., Lenain, N., Marchese, P., Vial, C., Heim, V., Freund, M., et al. (2003). A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J. Exp. Med. 198, 661–667.PubMedGoogle Scholar
  47. 44b.
    Oury, C., Kuijpers, M. J., Toth-Zsamboki, E., Bonnefoy, A., Danloy, S., Vreys, I., et al. (2003). Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood. 101, 3969–3976.PubMedGoogle Scholar
  48. 45.
    Rolf, M. G., Brearley, C. A., and Mahaut-Smith, M. P. (2001) Platelet shape change evoked by selective activation of P2X1 purinoceptors with α,β-methylene ATP. Thromb. Haemost. 85, 303–308.PubMedGoogle Scholar
  49. 46.
    Rolf, M. G. and Mahaut-Smith, M. P. (2002) Effects of enhanced P2X1 receptor Ca2+ influx on functional responses in human platelets. Thromb. Haemost. 88, 495–503.PubMedGoogle Scholar
  50. 47.
    Oury, C., Toth-Zsamboki, E., Thys, C., Tytgat, J., Vermylen, J., and Hoylaerts, M. F. (2001) The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen. Thromb. Haemost. 86, 1264–1271.PubMedGoogle Scholar
  51. 48.
    Jin, J. G. and Kunapuli, S. P. (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc. Natl. Acad. Sci. USA 95, 8070–8074.PubMedGoogle Scholar
  52. 49.
    Foster, C. J. (2001) Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine drugs using P2Yac-null mice. J. Clin. Invest. 107, 1591–1598.PubMedGoogle Scholar
  53. 50.
    Nurden, P., Savi, P., Heilmann, E., Bihour, C., Herbert, J-M., Maffrand, J.-P., et al. (1995) An inherited bleeding disorder linked to a defective interaction between ADP and its receptor on platelets. Its influence on glycoprotein IIb–IIIa complex function. J. Clin. Invest. 95, 1612–1622.PubMedGoogle Scholar
  54. 51.
    Cattaneo, M. and Gachet, C. (1999) ADP receptors and clinical bleeding disorders. Arterioscler. Thromb. Vasc. Biol. 19, 2281–2285.PubMedGoogle Scholar
  55. 52.
    Léon, C., Hechler, B., Freund, M., Eckly, A., Vial, C., Ohlmann, P., et al. (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice. J. Clin. Invest. 104, 1731–1737.PubMedGoogle Scholar
  56. 53.
    Fabre, J. E., Nguyen, M. T, Latour, A., Keifer, J. A., Audoly, L. P., Coffman, T. M., et al. (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nature Med. 5, 1199–1202.PubMedGoogle Scholar
  57. 54.
    Paul, B. Z. S., Jin, J. G, and Kunapuli, S. P. (1999) Molecular mechanism of thromboxane A2-induced platelet aggregation—Essential role for P2TAC and α2A receptors. J. Biol. Chem. 274, 29,108–29,114.PubMedGoogle Scholar
  58. 55.
    Léon, C., Freund, M., Ravanat, C., Baurand, A., Cazenave, J. P., and Gachet, C. (2001) Key role of the P2Y1 receptor in tissue factor-induced thrombin-dependent acute thromboembolism: Studies in P2Y1-knockout mice and mice treated with a P2Y1 antagonist. Circulation 103, 718–723.PubMedGoogle Scholar
  59. 56.
    Barr, A. J., Brass, L. F., and Manning, D. R. (1997) Reconstitution of receptors and GTP-binding regulatory proteins (G proteins) in Sf9 cells—A direct evaluation of selectivity in receptor. G protein coupling. J. Biol. Chem. 272, 2223–2229.PubMedGoogle Scholar
  60. 57.
    Kim, S., Quinton, T. M., Cattaneo, M., and Kunapuli, S. P. (2000) Evidence for diverse signal transduction pathways in thrombin receptor activating peptide (SFLLRN) and other agonist-induced fibrinogen receptor activation in human platelets. Blood 96, 242a(Abstract).Google Scholar
  61. 58.
    O’Brien, P. J., Molino, M., Kahn, M., and Brass, L. F. (2001) Protease activated receptors: theme and variations. Oncogene 20, 1570–1581.PubMedGoogle Scholar
  62. 59.
    Vu, T.-K. H., Hung, D. T., Wheaton, V. I., and Coughlin, S. R. (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068.PubMedGoogle Scholar
  63. 60.
    Nakanishi-Matsui, M., Zheng, Y. W., Sulciner, D. J., Weiss, E. J., Ludeman, M. J., and Coughlin, S. R. (2000) PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404, 609–610.PubMedGoogle Scholar
  64. 61.
    Kahn, M. L., Zheng, Y. W., Huang, W., Bigornia, V., Zeng, D. W., Moff, S., et al. (1998) A dual thrombin receptor system for platelet activation. Nature 394, 690–694.PubMedGoogle Scholar
  65. 62.
    Xu, W.-F., Andersen, H., Whitmore, T. E., Presnell, S. R., Yee, D. P., Ching, A. C., et al. (1998) Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci. USA 95, 6642–6646.PubMedGoogle Scholar
  66. 63.
    Ishii, K., Gerszten, R., Zheng, Y. W., Welsh, J. B., Turck, C. W., and Coughlin, S. R. (1995) Determinants of thrombin receptor cleavage. Receptor domains involved, specificity, and role of the P3 aspartate. J. Biol. Chem. 270, 16,435–16,440.PubMedGoogle Scholar
  67. 64.
    Covic, L., Gresser, A. L., and Kuliopulos, A. (2000) Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 39, 5458–5467.PubMedGoogle Scholar
  68. 65.
    Kahn, M. L., Nakanishi-Matsui, M., Shapiro, M. J., Ishihara, H., and Coughlin, S. R. (1999) Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J. Clin. Invest. 103, 879–887.PubMedGoogle Scholar
  69. 66.
    Sambrano, G. R., Weiss, E. J., Zheng, Y.-W., Huang, W., and Coughlin, S. R. (2001) Role of thrombin signaling in platelets in hemostasis and thrombosis. Nature 413, 74–78.PubMedGoogle Scholar
  70. 67.
    Lopez, J. A., Andrews, R. K, Afshar-Khargan, V., and Berndt, M. C. (1998) Bernard-Soulier syndrome. Blood 91, 4397–4418.PubMedGoogle Scholar
  71. 68.
    De Cristofaro, R., De Candia, E., Rutella, S., and Weitz, J. I. (2000) The Asp272-Glu282 region of platelet glycoprotein Ibα interacts with the heparin-binding site of α-thrombin and protects the enzyme from the heparin-catalyzed inhibition by antithrombin III. J. Biol. Chem. 275, 3887–3895.PubMedGoogle Scholar
  72. 69.
    De Marco, L., Mazzucato, M., Masotti, A., Fenton, J. W. II, and Ruggeri, Z. M. (1991) Function of glycoprotein Ibα in platelet activation induced by α-thrombin. J. Biol. Chem. 266, 23,776–23,783.PubMedGoogle Scholar
  73. 70.
    Harmon, J. T. and Jamieson, G. A. (1988) Platelet activation by thrombin in the absence of the high affinity thrombin receptor. Biochemistry 27, 2151–2157.PubMedGoogle Scholar
  74. 71.
    Mazzucato, M., De Marco, L., Masotti, A., Pradella, P., Bahou, W. F., and Ruggeri, Z. M. (1998) Characterization of the initial α-thrombin interaction with glycoprotein Ibα in relation to platelet activation. J. Biol. Chem. 273, 1880–1887.PubMedGoogle Scholar
  75. 72.
    De Candia, E., Hall, S. W., Rutella, S., Landolfi, R., Andrews, R. K, and De Cristofaro, R. (2001) Binding of thrombin to glycoprotein Ib accelerates hydrolysis of PAR1 on intact platelets. J. Biol. Chem. 276, 4692–4698.PubMedGoogle Scholar
  76. 73.
    Dörmann, D., Clemetson, K. J., and Kehrel, B. E. (2000) The GPIb thrombin-binding site is essential for thrombin-induced platelet procoagulant activity. Blood 96, 2469–2478.PubMedGoogle Scholar
  77. 74.
    Newman, K. D., Williams, L. T, Bishopric, N. H., and Lefkowitz, R. J. (1978) Identification of α-adrenergic receptors in human platelets by 3H-dihydroergocryptine binding. J. Clin. Invest. 61, 395–402.PubMedGoogle Scholar
  78. 75.
    Kaywin, P., McDonough, M., Insel, P. A., and Shattil, S. J. (1978) Platelet function in essential thrombocythemia: decreased epinephrine responsivenesss associated with a deficiency of platelet alpha-adrenergic receptors. N. Engl. J. Med. 299, 505–509.PubMedGoogle Scholar
  79. 76.
    Motulsky, H. J. and Insel, P. A. (1982) [3H]Dihydroergocryptine binding to alpha-adrenergic receptors of human platelets. A reassessment using the selective radioligands [3H]prazosin, [3H]yohimbine, and [3H]rauwolscine. Biochem. Pharmacol. 31, 2591–2597.PubMedGoogle Scholar
  80. 77.
    Siess, W., Weber, P. C, and Lapetina, E. G. (1984) Activation of phospholipase C is dissociated from arachidonate metabolism during platelet shape change induced by thrombin or platelet-activating factor. Epinephrine does not induce phospholipase C activation or platelet shape change. J. Biol. Chem. 259, 8286–8292.PubMedGoogle Scholar
  81. 78.
    Williams, A., Woolkalis, M. J., Poncz, M., Manning, D. R., Gewirtz, A., and Brass, L. F. (1990) Identification of the pertussis toxin-sensitive G proteins in platelets, megakaryocytes and HEL cells. Blood 76, 721–730.PubMedGoogle Scholar
  82. 79.
    Casey, P. J., Fong, H. K. W., Simon, M. I., and Gilman, A. G. (1990) Gz, a guanine nucleotide-binding protein with unique biochemical properties. J. Biol. Chem. 265, 2383–2390.PubMedGoogle Scholar
  83. 80.
    Lounsbury, K. M., Casey, P. J., Brass, L. F., and Manning, D. R. (1991) Phosphorylation of Gz in human platelets: selectivity and site of modification. J. Biol. Chem. 266, 22,051–22,056.PubMedGoogle Scholar
  84. 81.
    Wang, J., Frost, J. A., and Ross, E. M. (1999) Reciprocal signaling between heterotrimeric G proteins and the p21-stimulated protein kinase. J. Biol. Chem. 274, 31,641–31,647.PubMedGoogle Scholar
  85. 82.
    Ho, M. K. C. and Wong, Y. H. (2001) Gz signaling: emerging divergence from Gi signaling. Oncogene 20, 1615–1625.PubMedGoogle Scholar
  86. 83.
    FitzGerald, G. A. (1991) Mechanisms of platelet activation: Thromboxane A2 as an amplifying signal for other agonists. Am. J. Cardiol. 68, 11B–15B.PubMedGoogle Scholar
  87. 84.
    Hirata, T., Ushikubi, F., Kakizuka, A., Okuma, M., and Narumiya, S. (1996) Two thromboxane A2 receptor isoforms in human platelets—Opposite coupling to adenylyl cyclase with different sensitivity to Arg60 to Leu mutation. J. Clin. Invest. 97, 949–956.PubMedGoogle Scholar
  88. 85.
    Knezevic, I., Borg, C, and Le Breton, G. C. (1993) Identification of Gq as one of the G-proteins which copurify with human platelet thromboxane A2/prostaglandin H2 receptors. J. Biol. Chem. 268, 26,011–26,017.PubMedGoogle Scholar
  89. 86.
    Djellas, Y., Manganello, J. M., Antonakis, K., and Le Breton, G. C. (1999) Identification of Gα13 as one of the G-proteins that couple to human platelet thromboxane A2 receptors. J. Biol. Chem. 274, 14,325–14,330.PubMedGoogle Scholar
  90. 87.
    Offermanns, S., Laugwitz, K.-L., Spicher, K., and Schultz, G. (1994) G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc. Natl. Acad. Sci. USA 91, 504–508.PubMedGoogle Scholar
  91. 88.
    Thomas, D. W., Mannon, R. B., Mannon, P. J., Latour, A., Oliver, J. A., Hoffman, M., et al. (1998) Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. J. Clin. Invest. 102, 1994–2001.PubMedGoogle Scholar
  92. 89.
    Payrastre, B., Missy, K., Trumel, C, Bodin, S., Plantavid, M., and Chap, H. (2000) The integrin αIIb3 in human platelet signal transduction. Biochem. Pharmacol. 60, 1069–1074.PubMedGoogle Scholar
  93. 90.
    Philips, D. R., Prasad, K. S. S., Manganello, J., Bao, M., and Nannizzi-Alaimo, L. (2001) Integrin tyrosine phosphorylation in platelet signaling. Curr. Opin. Cell Biol. 13, 546–554.Google Scholar
  94. 91.
    Phillips, D. R., Nannizzi-Alamio, L., and Prasad, K. S. S. (2001) β3 tyrosine phosphorylation in αIIbβ3 (platelet membrane GP IIb–IIIa) outside-in integrin signaling. Thromb. Haemost. 86, 246–258.PubMedGoogle Scholar
  95. 92.
    Guinebault, C, Payrastre, B., Racaud-Sultan, C, Mazarguil, H., Breton, M., Mauco, G, et al. (1995) Integrin-dependent translocation of phosphoinositide 3-kinase to the cyto-skeleton of thrombin-activated platelets involves specific interactions of p85a with actin filaments and focal adhesion kinase. J. Cell Biol. 129, 831–842.PubMedGoogle Scholar
  96. 93.
    Shattil, S. J., O’Toole, T., Eigenthaler, M., Thon, V., Williams, M., Babior, B. M., et al. (1995) β3-Endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin β3 subunit. J. Cell Biol. 131, 807–816.PubMedGoogle Scholar
  97. 94.
    Naik, U. P., Patel, P. M., and Parise, L. V. (1997) Identification of a novel calcium-binding protein that interacts with the integrin αIIb cytoplasmic domain. J. Biol. Chem. 272, 4651–4654.PubMedGoogle Scholar
  98. 95.
    Shock, D. D., Naik, U. P., Brittain, J. E., Alahari, S. K., Sondek, J., and Parise, L. V. (1999) Calcium-dependent properties of CIB binding to the integrin αIIb cytoplasmic domain and translocation to the platelet cytoskeleton. Biochem. J. 342, 729–735.PubMedGoogle Scholar
  99. 96.
    Calderwood, D. A., Zent, R., Grant, R., Rees, D. J., Hynes, R. O., and Ginsberg, M. H. (1999) The talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28,071–28,074.PubMedGoogle Scholar
  100. 97.
    Gao, J., Zoller, K. E., Ginsberg, M. H., Brugge, J. S., and Shattil, S. J. (1997) Regulation of the pp72syk protein tyrosine kinase by platelet integrin αIIbβ3. EMBO J. 16, 6414–6425.PubMedGoogle Scholar
  101. 98.
    Woodside, D. G, Obergfell, A., Leng, L., Wilsbacher, J. L., Miranti, C. K., Brugge, J. S., et al. (2001) Activation of Syk protein tyrosine kinase through interaction with integrin β cytoplasmic domains. Curr. Biol. 11, 1799–1804.PubMedGoogle Scholar
  102. 99.
    Jenkins, A. L., Nannizzi-Alaimo, L., Silver, D., Sellers, J. R., Ginsberg, M. H., Law, D. A., et al. (1998) Tyrosine phosphorylation of the β3 cytoplasmic domain mediates integrin-cytoskeletal interactions. J. Biol. Chem. 273, 13,878–13,885.PubMedGoogle Scholar
  103. 100.
    Cowan, K. J., Law, D. A., and Phillips, D. R. (2000) Identification of Shc as the primary protein binding to the tyrosine-phosphorylated β3 subunit of αIIbβ3 during outside-in integrin platelet signaling. J. Biol. Chem. 275, 29,113–29,107.Google Scholar
  104. 101.
    Law, D. A., DeGuzman, F. R., Heiser, P., Ministri-Madrid, K., Killeen, N, and Phillips, D. R. (1999) Integrin cytoplasmic tyrosine motif is required for outside-in αIIbβ3 signalling and platelet function. Nature 401, 808–811.PubMedGoogle Scholar
  105. 102.
    Gale, N. W., Holland, S. J., Valenzuela, D. M., Flenniken, A., Pan, L., Ryan, T. E., et al. (1996) Eph receptors and ligands comprise two major specificty subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17, 9–19.PubMedGoogle Scholar
  106. 103.
    Klein, R. (2001) Excitatory Eph receptors and adhesive ephrin ligands. Curr. Opin. Cell Biol. 13, 196–203.PubMedGoogle Scholar
  107. 104.
    Dodelet, V. C. and Pasquale, E. B. (2000) Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 19, 5614–5619.PubMedGoogle Scholar
  108. 105.
    Huai, J. and Drescher, U. (2001) An ephrin-A-dependent signaling pathway controls integrin function and is linked to the tyrosine phosphorylation of a 120 kDa protein. J. Biol. Chem. 276, 6689–6694.PubMedGoogle Scholar
  109. 106.
    Zou, J. X., Wang, B., Kalo, M. S., Zisch, A. H., Pasquale, E. B., and Ruoslahti, E. (1999) An Eph receptor regulates integrin activity through R-Ras. Proc. Natl. Acad. Sci. USA 96, 13,813–13,818.PubMedGoogle Scholar
  110. 107.
    Davy, A. and Robbins, S. M. (2000) Ephrin-A5 modulates cell adhesion and morphology in an integrin-dependent manner. EMBO J. 19, 5396–5405.PubMedGoogle Scholar
  111. 108.
    Gerety, S. S., Wang, H. U., Chen, Z.-F., and Anderson, D. J. (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Molec. Cell 4, 403–414.PubMedGoogle Scholar
  112. 109.
    Adams, R. H., Wilkinson, G. A., Weiss, C, Diella, F., Gale, N. W., Deutsch, U., et al. (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis and sprouting angiogenesis. Genes Dev. 13, 295–306.PubMedGoogle Scholar
  113. 110.
    Adams, R. H. and Klein, R. (2000) Eph receptors and ephrin ligands: Essential mediators of vascular development. Trends Cardiovasc. Med. 10, 183–188.PubMedGoogle Scholar
  114. 111.
    Himanen, J. P., Rajashankar, K. R., Lackmann, M., Cowan, C. A., Henkemeyer, M., and Nikolov, D. B. (2001) Crystal structure of an Eph receptor-ephrin complex. Nature 414, 933–938.PubMedGoogle Scholar
  115. 112.
    Huynh-Do, U., Stein, E., Lane, A. A., Liu, H., Cerretti, D. P., and Daniel, T. O. (1999) Surface densities of ephrin-B1 determine EphB1-coupled activation if cell attachment through αvβ3 and α5β1 integrins. EMBO J. 18, 2165–2173.PubMedGoogle Scholar
  116. 113.
    Holland, S. J., Gale, N. W., Gish, G. D., Roth, R. A., Zhou, S. Y., Cantley, L. C, et al. (1997) Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 16, 3877–3888.PubMedGoogle Scholar
  117. 114.
    Hock, B., Bohme, B., Karn, T., Yamamoto, T., Kaibuchi, K., Holtrich, U., et al. (1998) PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc. Natl. Acad. Sci. USA 95, 9779–9784.PubMedGoogle Scholar
  118. 115.
    Torres, R., Firestein, B. L., Dong, H. L., Staudinger, J., Olson, E. N., Huganir, R. L., et al. (1998) PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21, 1453–1463.PubMedGoogle Scholar
  119. 116.
    Lin, D., Gish, G. D., Songyang, Z., and Pawson, T. (1999) The carboxyl terminus of B class ephrins constitutes a PDZ binding motif. J. Biol. Chem. 274, 3726–3733.PubMedGoogle Scholar
  120. 117.
    Dodelet, V. C, Pazzagli, C, Zisch, A. H., Hauser, C. A., and Pasquale, E. B. (1999) A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A. J. Biol. Chem. 274, 31,941–31,946.PubMedGoogle Scholar
  121. 118.
    Pandey, A., Duan, H., and Dixit, V. M. (1995) Characterization of a novel src-like adapter protein that associates with the Eck receptor tyrosine kinase. J. Biol. Chem. 270, 19,201–19,204.PubMedGoogle Scholar
  122. 119.
    Cowan, C. A. and Henkemeyer, M. (2001) The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413, 174–179.PubMedGoogle Scholar
  123. 120.
    Birgbauer, E., Cowan, C. A., Sretavan, D. W., and Henkemeyer, M. (2000) Kinase independent function of EphB receptors in retinal axon pathfinding to the optic disc from dorsal but not ventral retina. Development 127, 1231–1241.PubMedGoogle Scholar
  124. 121.
    Buchert, M., Schneider, S., Meskenaite, V., Adams, M. T, Canaani, E., Baechi, T, et al. (1999) The junction-associated protein AF-6 interacts and clusters with specific Eph receptor tyrosine kinases at specialized sites of cell-cell contact in the brain. J. Cell Biol. 144, 361–371.PubMedGoogle Scholar
  125. 122.
    Bruckner, K, Pablo Labrador, J., Scheiffele, P., Herb, A., Seeburg, P. H., and Klein, R. (1999) EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511–524.Google Scholar
  126. 123.
    Holl, S. J., Gale, N. W., Mbamalu, G, Vancopoulos, G. D., Henkemeyer, M., and Pawson, T. (1996) Bidirectional signaling through the the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725.Google Scholar
  127. 124.
    Palmer, A., Zimer, M., Erdmann, K. S., Eulenberg, V., Porthin, A., Heumann, R., et al. (2002) Ephrin B phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol. Cell 9, 725–737.PubMedGoogle Scholar
  128. 125.
    Bruckner, K, Pasquale, E. B., and Klein, R. (1997) Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640–1643.PubMedGoogle Scholar
  129. 126.
    Chong, L. D., Park, E. K, Latimer, E., Friesel, R., and Daar, I. O. (2000) Fibroblast growth factor receptor-mediated rescue of x-ephrin B1-induced cell dissociation in Xenopus embryos. Mol. Cell Biol. 20, 724–734.PubMedGoogle Scholar
  130. 127.
    Kullander, K., Mather, N. K., Diella, F., Dottori, M., Boyd, A. W., and Klein, R. (2001) Kinase-dependent and kinase-independent functions of EphA4 receptors in major tract formation in vivo. Neuron 29, 73–84.PubMedGoogle Scholar
  131. 128.
    Grunwald, I. C, Korte, M., Wolfer, D., Wilkinson, G. A., Unsicker, K., Lipp, H.-P., et al. (2001) Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040.PubMedGoogle Scholar
  132. 129.
    Schultz, J., Ponting, C. P., Hofmann, K, and Bork, P. (1997) SAM as a protein interaction domain involved in developmental regulation. Protein Sci. 6, 249–253.PubMedGoogle Scholar
  133. 130.
    Thanos, C. D., Goodwill, K. E., and Bowie, J. U. (1999) Oligomeric structure of the human Ephb2 receptor SAM domain. Science 283, 833–836.PubMedGoogle Scholar
  134. 131.
    Stapleton, D., Balan, L., Pawson, T., and Sicheri, F. (1999) The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nature Struct. Biol. 6, 44–49.PubMedGoogle Scholar
  135. 132.
    Smalla, M., Schmieder, P., Kelly, M., Ter Laak, A., Krause, G, Ball, L., et al. (1999) Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites. Protein Sci. 8, 1954–1961.PubMedGoogle Scholar
  136. 133.
    Prevost, N., Woulfe, D., Tanaka, T., and Brass, L. F. (2002) Interactions between Eph kinases and ephrins provide a novel mechanism to support platelet aggregation once cell-to-cell contact has occured. Proc. Natl. Acad. Sci. USA 99, 9219–9224.PubMedGoogle Scholar
  137. 134.
    Felding-Habermann, B., Silletti, S., Mei, F., Siu, C. H., Yip, P. M., Brooks, P. C, et al. (1997) A single immunoglobulin-like domain of the human neural cell adhesion molecule L1 supports adhesion by multiple vascular and platelet integrins. J. Cell Biol. 139, 1567–1581.PubMedGoogle Scholar
  138. 135.
    Geddis, A. E., Linden, H. M., and Kaushansky, K. (2002) Thrombopoietin: a pan-hematopoietic cytokine. Cytokine & Growth Factor Rev. 13, 61–73.Google Scholar
  139. 136.
    Shivdasani, R. A. (2001) Molecular and transcriptional regulation of megakaryocyte differentiation. Stem Cell 19, 397–407.Google Scholar
  140. 137.
    Shattil, S. J. and Leavitt, A. D. (2001) All in the family: Primary megakaryocytes for studies of platelet αIIbβ3 signaling. Thromb. Haemost. 86, 259–265.PubMedGoogle Scholar
  141. 138.
    Shiraga, M., Ritchie, A., Aidoudi, S., Baron, V., Wilcox, D., White, G., et al. (1999) Primary megakaryocytes reveal a role for transcription factor NF-E2 in integrin αIIbβ3 signaling. J. Cell Biol. 147, 1419–1429.PubMedGoogle Scholar
  142. 139.
    Faraday, N., Rade, J. J., Johns, D. C, Khetawat, G, Noga, S. J., DiPersio, J. F., et al. (1999) Ex vivo cultured megakaryocytes express functional glycoprotein IIb–IIIa receptors and are capable of adenovirus-mediated transgene expression. Blood 94, 4084–4092.PubMedGoogle Scholar
  143. 140.
    Bertoni, A., Tadokoro, S., Eto, K, Pampori, N., Parisi, L. V., White, G. C, et al. (2002) Relationships between Rap1b, affinity modulation of integrin αIIbβ3 and the actin cyto-skeleton. J. Biol. Chem. 277, 25,715–25,721.PubMedGoogle Scholar
  144. 141.
    Brass, L. F., Manning, D. R., Williams, A., Woolkalis, M. J., and Poncz, M. (1991) Receptor and G protein-mediated responses to thrombin in HEL cells. J. Biol. Chem. 266, 958–965.PubMedGoogle Scholar
  145. 142.
    Van der Vuurst, H., Van Willigen, G., Van Spronsen, A., Hendriks, M., Donath, J., and Akkerman, J. W. N. (1997) Signal transduction through trimeric G proteins in megakaryo-blastic cell lines. Arterioscler. Thromb. Vasc. Biol. 17, 1830–1836.PubMedGoogle Scholar
  146. 143.
    Cichowski, K, Orsini, M. J., and Brass, L. F. (1999) PAR1 activation initiates integrin engagement and outside-in signaling in megakaryoblastic CHRF-288 cells. Biochim. Biophys. Acta 145, 265–276.Google Scholar
  147. 144.
    Brass, L. F., Pizarro, S., Ahuja, M., Belmonte, E., Blanchard, N., Stadel, J. M., et al. (1994) Changes in the structure and function of the human thrombin receptor during receptor activation, internalization and recycling. J. Biol. Chem. 269, 2943–2952.PubMedGoogle Scholar
  148. 145.
    Choi, E. S., Nichol, J. L., Hokom, M. M., Hornkohl, A. C, and Hunt, P. (1995) Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood 85, 402–413PubMedGoogle Scholar
  149. 146.
    Faraday, N., Rade, J. J., Johns, D. C, Khetawat, G., Noga, S. J., DiPersio, J. F., et al. (1999) Ex vivo cultured megakaryocytes express functional glycoprotein IIb–IIIa receptors and are capable of adenovirus-mediated transgene expression. Blood 94, 4084–4092.PubMedGoogle Scholar
  150. 147.
    Eto, K., Murphy, R., Kerrigan, S. W., Bertoni, A., Stuhlmann, H., Nakano, T., et al. (2002) Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc. Natl. Acad. Sci. USA 99, 12,819–12,824.PubMedGoogle Scholar
  151. 148.
    Brass, L. F., Vassallo, R. R. Jr., Belmonte, E., Ahuja, M., Cichowski, K., and Hoxie, J. A. (1992) Structure and function of the human platelet thrombin receptor: studies using monoclonal antibodies against a defined epitope within the receptor N-terminus. J. Biol. Chem. 267, 13,795–13,798.PubMedGoogle Scholar
  152. 149.
    Ishihara, H., Connolly, A. J., Zeng, D., Kahn, M. L., Zheng, Y. W., Timmons, C, et al. (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502–508.PubMedGoogle Scholar
  153. 150.
    Faruqi, T. R., Weiss, E. J., Shapiro, M. J., Huang, W., and Coughlin, S. R. (2000) Structure-function analysis of protease-activated receptor 4 tethered ligand peptides—Determinants of specificity and utility in assays of receptor function. J. Biol. Chem. 275, 19,728–19,734.PubMedGoogle Scholar
  154. 151.
    Mills, D. C. B. (1996) ADP receptors on platelets. Thromb. Haemost. 76, 835–856.PubMedGoogle Scholar
  155. 152.
    Gachet, C, Hechler, B., Léon, C, Vial, C, Leray, C, Ohlmann, P., et al. (1997) Activation of ADP receptors and platelet function. Thromb. Haemost. 78, 271–275.PubMedGoogle Scholar
  156. 153.
    Hirata, M., Hayashi, Y., Ushikubi, F., Nakanishi, S., and Narumiya, S. (1991) Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 349, 617–620.PubMedGoogle Scholar
  157. 154.
    Hanasaki, K. and Arita, H. (1988) Characterization of thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors of rat platelets and their interaction with TXA2/PGH2 receptor antagonists. Biochem. Pharmacol. 37, 3923–3929.PubMedGoogle Scholar
  158. 155.
    Furci, L., Fitzgerald, D. J., and FitzGerald, G. A. (1991) Heterogeneity of prostaglandin H2/thromboxane A2 receptors: Distinct subtypes mediate vascular smooth muscle contraction and platelet aggregation. J. Pharmacol. Exp. Ther. 258, 74–81.PubMedGoogle Scholar
  159. 156.
    Kobilka, B. K., Matsui, H., Kobilka, T. S., Yang Feng, T. L., Francke, U., Caron, M. G, et al. (1987) Cloning, sequencing, and expression of the gene coding for the human platelet α2-adrenergic receptor. Science 238, 650–656.PubMedGoogle Scholar
  160. 157.
    Vane, J. R. and Botting, R. M. (1995) Pharmacodynamic profile of prostacyclin. Am. J. Cardiol. 75, 3A–10A.PubMedGoogle Scholar
  161. 158.
    Kowalska, M. A., Ratajczak, J., Hoxie, J., Brass, L. F., Gewirtz, A., Poncz, M., et al. (1999) Megakaryocyte precursors, megakaryocytes and platelets express the HIV co-receptor CXCR4 on their surface: determination of response to stromal-derived factor-1 by megakaryocytes and platelets. Br. J. Haematol. 104, 220–229.PubMedGoogle Scholar
  162. 159.
    Kowalska, M. A., Ratajczak, M. Z., Majka, M., Jin, J. G, Kunapuli, S., Brass, L., et al. (2000) Stromal cell-derived factor-1 and macrophage-derived chemokine: 2 chemokines that activate platelets. Blood 96, 50–57.PubMedGoogle Scholar
  163. 160.
    Chao, W. and Olson, M. S. (1993) Platelet-activating factor: Receptors and signal transduction. Biochem. J. 292, 617–629.PubMedGoogle Scholar
  164. 161.
    Honda, Z., Nakamura, M., Miki, I., Minami, M., Watanabe, T., Seyama, Y., et al. (1991) Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature 349, 342–346.PubMedGoogle Scholar
  165. 162.
    Bichet, D. G., Arthus, M.-F., Barjon, J. N., Lonergan, M., and Kortas, C. (1987) Human platelet fraction arginine-vasopressin: potential physiological role. J. Clin. Invest. 79, 881–887.PubMedGoogle Scholar
  166. 163.
    Inaba, K., Umeda, Y., Yamane, Y, Urakami, M., and Inada, M. (1988) Characterization of human platelet vasopressin receptor and the relation between vasopressin-induced platelet aggregation and vasopressin binding to platelets. Clin. Endocrinol. (Oxf.) 29, 377–386.Google Scholar
  167. 164.
    Siess, W., Stifel, M., Binder, H., and Weber, P. (1986) Activation of V1-receptors by vasopressin stimulates inositol phospholipid hydrolysis and arachidonate metabolism in human platelets. Biochem. J. 233, 83–91.PubMedGoogle Scholar
  168. 165.
    Vittet, D., Cantau, B., Mathieu, M.-N., and Chevillard, C. (1988) Properties of vasopressin-activated human platelet high affinity GTPase. Biochem. Biophys. Res. Commun. 154, 213–218.PubMedGoogle Scholar
  169. 166.
    Connolly, A. J., Ishihara, H., Kahn, M. L., Farese, R. V. Jr., and Coughlin, S. R. (1996) Role of the thrombin receptor in development and evidence for a second receptor. Nature 381, 516–519.PubMedGoogle Scholar
  170. 167.
    Darrow, A. L., Fung-Leung, W. P., Ye, R. D., Santulli, R. J., Cheung, W. M., Derian, C. K., et al. (1996) Biological consequences of thrombin receptor deficiency in mice. Thromb. Haemost. 76, 860–866.PubMedGoogle Scholar
  171. 168.
    Fabre, J.-E., Nguyen, M., Latour, A., Kiefer, J. A., Audoly, A. P., Coffman, T. M., et al. (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nature Med. 5, 1199–1202.PubMedGoogle Scholar
  172. 169.
    Mulryan, K., Gitterman, D. P., Lewis, C. J., Vial, C, Leckie, B. J., Cobb, A. L., et al. (2000) Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 403, 86–89.PubMedGoogle Scholar
  173. 170.
    Vial, C, Rolf, M. G., Mahaut-Smith, M. P., and Evans, R. J. (2002) A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors. Br. J. Pharmacol. 135, 363–372.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Donna Woulfe
    • 1
  • Jing Yang
    • 2
  • Nicolas Prevost
    • 1
  • Peter O’Brien
    • 3
  • Ryan Fortna
    • 1
  • Massimiliano Tognolini
    • 1
  • Hong Jiang
    • 1
  • Jie Wu
    • 1
  • Lawrence F. Brass
    • 1
  1. 1.Hematology-Oncology DivisionUniversity of PennsylvaniaPhiladelphia
  2. 2.Centocor, Inc.Malvern
  3. 3.Diagnostic and Experimental MedicineLilly Research LaboratoriesIndianapolis

Personalised recommendations