Platelets and Megakaryocytes pp 109-120

Part of the Methods In Molecular Biology™ book series (MIMB, volume 272) | Cite as

Studies of Secretion Using Permeabilized Platelets

  • Tara W. Rutledge
  • Sidney W. Whiteheart

Abstract

Exocytosis from the three granules of platelets (dense-core, alpha, and lysosome) is a key event in normal hemostasis. Defects in these processes lead to bleeding-time disorders, such as Hermansky-Pudlak and gray platelet syndromes (1, 2, 3, 4). Conversely, hyperactive secretion causes inappropriate clot formation, leading to the occurrence of stroke or heart attack (5,6). These two examples of hypo- and hyperactive platelets underline the need to understand the molecular mechanisms that are required for the platelet-release reaction. Recent advances by several groups have elucidated at least some of the proteins required for platelet exocytosis. Soluble NSF attachment protein receptor (SNARE) proteins mediate platelet granule-plasma membrane fusion (reviewed in 7, 8, 9). These integral membrane proteins form heterotrimeric (or heterotetrameric) complexes that span the two bilayers of a membrane fusion junction (reviewed in 10,11). Proteins of the t-SNARE class (target membrane SNAREs), such as syntaxin 2 and SNAP-23, have been shown to be required for all three granule-release events (12, 13, 14, 15). Syntaxin 4, however, participates only in alpha-granule and lysosome release (12, 13, 14). v-SNAREs (vesicle SNAREs), such as VAMP-3/hceb and VAMP-8/endobrevin, have been shown to be present in platelets (16,17) and have been implicated in alpha-granule and dense-core exocytosis (17,18). With the establishment of the SNAREs as the basic membrane fusion machinery for granule release, the focus now turns to SNARE regulatory molecules that control how the t- and v-SNAREs interact with each other. Molecules such as Munc18, DOC2, Munc13, Rab, and members of the synaptophysin/pantophysin families are present in platelets (T. W. Rutledge and S. W. Whiteheart, unpublished observations; T. D. Schraw and A. M. Bernstein, personal communications; 19, 20, 21) and may hold the key to the distinct regulation of each of the three platelet-secretion events.

References

  1. 1.
    Huizing, M., Anikster, Y., and Gahl, W. A. (2001) Hermansky-Pudlak syndrome and Chediak-Higashi syndrome: Disorders of vesicle formation and trafficking. Thromb. Haemost. 86, 233–245.PubMedGoogle Scholar
  2. 2.
    Huizing, M., Anikster, Y., and Gahl, W. A. (2000) Hermansky-Pudlak syndrome and related disorders of organelle formation. Traffic 1, 823–835.PubMedCrossRefGoogle Scholar
  3. 3.
    Rendu, F. and Brohard-Bohn, B. (2001) The platelet release reaction: Granules’ constituents, secretion and functions. Platelets 12, 261–273.PubMedCrossRefGoogle Scholar
  4. 4.
    Smith, M. P., Cramer, E. M., and Savidge, G. F. (1997) Megakaryocytes and platelets in alpha-granule disorders. Baillieres Clin. Haematol. 10, 125–148.PubMedCrossRefGoogle Scholar
  5. 5.
    Islim, I. F., Bareford, D., Ebanks, M., and Beevers, D. G. (1995) The role of platelets in essential hypertension. Blood Press. 4, 199–214.PubMedCrossRefGoogle Scholar
  6. 6.
    Andrioli, G., Ortolani, R., Fontana, L., Gaino, S., Bellavite, P., Lechi, C., et al. (1996) Study of platelet adhesion in patients with uncomplicated hypertension. J. Hypertens. 14, 1215–1221.PubMedCrossRefGoogle Scholar
  7. 7.
    Reed, G. L., Fitzgerald, M. L., and Polgar, J. (2000) Molecular mechanisms of platelet exocytosis: Insights into the “secrete” life of thrombocytes. Blood 96, 3334–3342.PubMedGoogle Scholar
  8. 8.
    Furie, B., Furie, B. C., and Flaumenhaft, R. (2001) A journey with platelet P-selectin: The molecular basis of granule secretion, signaling and cell adhesion. Thromb. Haemost. 86, 214–221.PubMedGoogle Scholar
  9. 9.
    Yoshioka, A., Horiuchi, H., Shirakawa, R., Nishioka, H., Tabuchi, A., Higashi, T., et al. (2001) Molecular dissection of alpha-and dense-core granule secretion of platelets. Ann. N.Y. Acad. Sci. 947, 403–406.PubMedCrossRefGoogle Scholar
  10. 10.
    Hay, J. C. and Scheller, R. H. (1997) SNAREs and NSF in targeted membrane fusion. Curr. Opin. Cell Biol. 9, 505–512.PubMedCrossRefGoogle Scholar
  11. 11.
    Jahn, R. and Sudhof, T. C. (1999) Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911.PubMedCrossRefGoogle Scholar
  12. 12.
    Flaumenhaft, R., Croce, K., Chen, E., Furie, B., and Furie, B. C. (1999) Proteins of the exocytotic core complex mediate platelet alpha-granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syntaxin 4. J. Biol. Chem. 274, 2492–501.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, D., Lemons, P. P., Schraw, T., and Whiteheart, S. W. (2000) Molecular mechanisms of platelet exocytosis: Role of SNAP-23 and syntaxin 2 and 4 in lysosome release. Blood 96, 1782–1788.PubMedGoogle Scholar
  14. 14.
    Lemons, P. P., Chen, D., and Whiteheart, S. W. (2000) Molecular mechanisms of platelet exocytosis: Requirements for alpha-granule release. Biochem. Biophys. Res. Commun. 267, 875–880.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen, D., Bernstein, A. M., Lemons, P. P., and Whiteheart, S. W. (2000) Molecular mechanisms of platelet exocytosis: Role of SNAP-23 and syntaxin2 in dense core granule release. Blood 95, 921–929.PubMedGoogle Scholar
  16. 16.
    Bernstein, A. M. and Whiteheart, S. W. (1999) Identification of a cellubrevin/vesicle associated membrane protein 3 homologue in human platelets. Blood 93, 571–579PubMedGoogle Scholar
  17. 17.
    Polgar, J., Chung, S. H., and Reed, G. L. (2002) Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion. Blood 100, 1081–1083.PubMedCrossRefGoogle Scholar
  18. 18.
    Feng, D., Crane, K., Rozenvayn, N., Dvorak, A. M., and Flaumenhaft, R. (2002) Subcellular distribution of 3 functional platelet SNARE proteins: Human cellubrevin, SNAP-23, and syntaxin 2. Blood 99, 4006–4014.PubMedCrossRefGoogle Scholar
  19. 19.
    Fitzgerald, M. L. and Reed, G. L. (1999) Rab6 is phosphorylated in thrombin-activated platelets by a protein kinase C-dependent mechanism: Effects on GTP/GDP binding and cellular distribution. Biochem. J. 342, 353–360.PubMedCrossRefGoogle Scholar
  20. 20.
    Shirakawa, R., Yoshioka, A., Horiuchi, H., Nishioka, H., Tabuchi, A., and Kita, T. (2000) Small GTPase Rab4 regulates Ca2+-induced alpha-granule secretion in platelets. J. Biol. Chem. 275, 33,844–33,849.PubMedCrossRefGoogle Scholar
  21. 21.
    Reed, G. L., Houng, A. K., and Fitzgerald, M. L. (1999) Human platelets contain SNARE proteins and a Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin activation: Implications for platelet secretion. Blood 93, 2617–2626.PubMedGoogle Scholar
  22. 22.
    Coorssen, J. R. and Haslam, R. J. (1993) GTPγS and phorbol ester act synergistically to stimulate both Ca2+-independent secretion and phospholipase D activity in permeabilized human platelets. Inhibition by BAPTA and analogues. FEBS Lett. 316, 170–174.PubMedCrossRefGoogle Scholar
  23. 23.
    Sloan, D. C. and Haslam, R. J. (1997) Protein kinase C-dependent and Ca2+-dependent mechanisms of secretion from Streptolysin O-permeabilized platelets: Effects of leakage of cytosolic proteins. Biochem. J. 328, 13–21.PubMedGoogle Scholar
  24. 24.
    Marcu, M. G., Zhang, L., Nau-Staudt, K., and Trifaro, J. M. (1996) Recombinant scinderin, an F-actin severing protein, increases calcium-induced release of serotonin from permeabilized platelets, an effect blocked by two scinderin-derived actin-binding peptides and phosphatidylinositol 4,5-bisphosphate. Blood 87, 20–24.PubMedGoogle Scholar
  25. 25.
    Elzagallaai, A., Rose, S. D., Brandan, N. C., and Trifaro, J. M. (2001) Myristoylated alanine-rich C kinase substrate phosphorylation is involved in thrombin-induced serotonin release from platelets. Br. J. Haematol. 112, 593–602.PubMedCrossRefGoogle Scholar
  26. 26.
    Authi, K. S., Rao, G. H., Evenden, B. J., and Crawford, N. (1988) Action of guanosine 5′-[beta-thio]diphosphate on thrombin-induced activation and Ca2+ mobilization in saponin-permeabilized and intact human platelets. Biochem. J. 255, 885–893.PubMedGoogle Scholar
  27. 27.
    Arvand, M., Bhakdi, S., Dahlback, B., and Preissner, K. T. (1990) Staphylococcus aureus alpha-toxin attack on human platelets promotes assembly of the prothrombinase complex. J. Biol. Chem. 265, 14,377–14,381.PubMedGoogle Scholar
  28. 28.
    Flaumenhaft, R., Furie, B., and Furie, B. C. (1999) Alpha-granule secretion from alpha-toxin permeabilized, MgATP-exposed platelets is induced independently by H+ and Ca2+. J. Cell. Physiol. 179, 1–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Knight, D. E. and Scrutton, M. C. (1993) Electropermeabilized platelets: A preparation to study exocytosis. Methods Enzymol. 221, 123–138.PubMedCrossRefGoogle Scholar
  30. 30.
    Ahnert-Hilger, G., Mach, W., Föhr, K. J., and Gratzl, M. (1989) Poration by α-toxin and Streptolysin-O: An approach to analyze intracellular process. Methods in Cell Biol. 31, 63–90.CrossRefGoogle Scholar
  31. 31.
    Rutledge, T. W. and Whiteheart, S. W. (2002) SNAP-23 is a target for calpain cleavage in activated platelets. J. Biol. Chem. 277, 37,009–37,015.PubMedCrossRefGoogle Scholar
  32. 32.
    Holmsen, H. and Dangelmaier, C. A. (1989) Measurement of secretion of serotonin. Methods Enzymol. 169, 205–210.PubMedCrossRefGoogle Scholar
  33. 33.
    Harrison, P. and Cramer, E. M. (1993) Platelet alpha-granules. Blood Rev. 7, 52–62.PubMedCrossRefGoogle Scholar
  34. 34.
    Fasshauer, D., Antonin, W., Margittai, M., Pabst, S., and Jahn, R. (1999) Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem. 274, 15,440–15,446.PubMedCrossRefGoogle Scholar
  35. 35.
    Yang, B., Gonzalez, L., Jr., Prekeris, R., Steegmaier, M., Advani, R. J., and Scheller, R. H. (1999) SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem. 274, 5649–5653.PubMedCrossRefGoogle Scholar
  36. 36.
    Bock, J. B., Matern, H. T., Peden, A. A., and Scheller, R. H. (2001) A genomic perspective on membrane compartment organization. Nature 409, 839–841.PubMedCrossRefGoogle Scholar
  37. 37.
    Guo, Z., Turner, C., and Castle, D. (1998) Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell 94, 537–548.PubMedCrossRefGoogle Scholar
  38. 38.
    Polgar, J. and Reed, G. L. (1999) A critical role for N-ethylmaleimide-sensitive fusion protein (NSF) in platelet granule secretion. Blood 94, 1313–1318.PubMedGoogle Scholar
  39. 39.
    DeBello, W. M., O’Connor, V., Dresbach, T., Whiteheart, S. W., Wang, S. S., Schweizer, F. E., et al. (1995) SNAP-mediated protein-protein interactions essential for neurotransmitter release. Nature 373, 626–630.PubMedCrossRefGoogle Scholar
  40. 40.
    Schweizer, F. E., Dresbach, T., DeBello, W. M., O’Connor, V., Augustine, G. J., and Betz, H. (1998) Regulation of neurotransmitter release kinetics by NSF. Science 279, 1203–1206.PubMedCrossRefGoogle Scholar
  41. 41.
    Dresbach, T., Burns, M. E., O’Connor, V., DeBello, W. M., Betz, H., and Augustine, G. J. (1998) A neuronal Sec1 homolog regulates neurotransmitter release at the squid giant synapse. J. Neurosci. 18, 2923–2932.PubMedGoogle Scholar
  42. 42.
    Greenberg-Sepersky, S. M. and Simons, E. R. (1985) Release of a fluorescent probe as an indicator of lysosomal granule secretion by thrombin-stimulated human platelets. Anal. Biochem. 147, 57–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Bhakdi, S., Roth, M., Sziegoleit, A., and Tranum-Jensen, J. (1984) Isolation and identification of two hemolytic forms of streptolysin-O. Infect. Immun. 46, 394–400.PubMedGoogle Scholar
  44. 44.
    Patton, C., Thompson, S., and Epel, D. (2004) Some precautions in using chelators to buffer metals in biological solutions. Cell Calcium. 35, 427–431.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Tara W. Rutledge
    • 1
  • Sidney W. Whiteheart
    • 1
  1. 1.Department of Molecular and Cellular BiochemistryUniversity of Kentucky College of MedicineLexington

Personalised recommendations