Short Hairpin Activated Gene Silencing in Mammalian Cells

  • Patrick J. Paddison
  • Amy A. Caudy
  • Ravi Sachidanandam
  • Gregory J. Hannon
Part of the Methods in Molecular Biology book series (MIMB, volume 265)

Abstract

RNA interference (RNAi) is now a popular method for silencing gene expression in a variety of systems. RNAi methods use double-stranded RNAs (dsRNAs) to target complementary RNAs for destruction. In mammalian systems, very short dsRNAs (22–25 bp) such as short interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) are used to avoid endogenous nonspecific antiviral responses that target longer dsRNAs. siRNAs elicit a transient silencing response, while shRNAs can be expressed continuously to establish stable gene silencing. shRNAs can be introduced into cells and animals using a variety of standard vectors as well as retroviral or lentiviral expression systems. This chapter describes the design, construction, validation, and use of shRNAs for silencing genes. We report our results from testing a variety of shRNA design features and shRNA expression vectors. We also provide methods that use shRNAs to permit different levels of gene expression. Additionally, we discuss some aspects important for constructing an information pipeline to support development of a large shRNA library.

Key Words

RNA interference U6 small hairpin short interfering RNA short hairpin activated gene silencing library 

References

  1. 1.
    Hannon, G. J. (2002) RNA interference. Nature 418, 244–251.PubMedCrossRefGoogle Scholar
  2. 2.
    Baglioni, C. and Nilsen, T. W. (1983) Mechanisms of antiviral action of interferon. Interferon 5, 23–42.PubMedGoogle Scholar
  3. 3.
    Williams, B. R. (1997) Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem. Soc. Trans. 25, 509–513.PubMedGoogle Scholar
  4. 4.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.PubMedCrossRefGoogle Scholar
  5. 5.
    Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., and Conklin, D. S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958.PubMedCrossRefGoogle Scholar
  6. 6.
    Paddison, P. J., Caudy, A. A., and Hannon, G. J. (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 1443–1448.PubMedCrossRefGoogle Scholar
  7. 7.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.PubMedCrossRefGoogle Scholar
  8. 8.
    Paul, C. P., Good, P. D., Winer, I., and Engelke, D. R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508.PubMedCrossRefGoogle Scholar
  9. 9.
    Sui, G., Soohoo, C., {mnAffar el}, B., Gay, F., Shi, Y., and Forrester, W. C. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520.Google Scholar
  10. 10.
    Yu, J. Y., DeRuiter, S. L., and Turner, D. L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047–6052.PubMedCrossRefGoogle Scholar
  11. 11.
    Zeng, Y., Wagner, E. J., and Cullen, B. R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1–20.CrossRefGoogle Scholar
  12. 12.
    Paddison, P. J. and Hannon, G. J. (2002) RNA interference: the new somatic cell genetics? Cancer Cell 2, 17–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Hemann, M. T., Fridman, J. S., Zilfou, J. T., Hernando, E., Paddison, P. J., Cordon-Cardo, C., Hannon, G. J., and Lowe, S. W. (2003) An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet. 33, 396–400.PubMedCrossRefGoogle Scholar
  14. 14.
    McCaffrey, A. P., Nakai, H., Pandey, K., Huang, Z., Salazar, F. H., Xu, H., Wieland, S. F., Marion, P. L., and Kay, M. A. (2003) Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol. 6, 639–644.CrossRefGoogle Scholar
  15. 15.
    Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J., and Rosenquist, T. A. (2003) Germline transmission of RNAi in mice. Nat. Struct. Biol. 10, 91–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Semizarov, D., Frost, L., Sarthy, A., Kroeger, P., Halbert, D. N., and Fesik, S. W. (2003) Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl. Acad. Sci. USA 100, 6347–6352.PubMedCrossRefGoogle Scholar
  17. 17.
    Chi, J. T., Chang, H. Y., Wang, N. N., Chang, D. S., Dunphy, N., and Brown, P. O. (2003) Genomewide view of gene silencing by small interfering RNAs. Proc. Natl. Acad. Sci. USA 100, 6343–6346.PubMedCrossRefGoogle Scholar
  18. 18.
    Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G., and Linsley, P. S. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637.PubMedCrossRefGoogle Scholar
  19. 19.
    Singh, R. and Reddy, R. (1989) Gamma-monomethyl phosphate: a cap structure in spliceosomal U6 small nuclear RNA. Proc. Natl. Acad. Sci. USA 86, 8280–8283.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang, H., Kolb, F. A., Brondani, V., Billy, E., and Filipowicz, W. (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885.PubMedCrossRefGoogle Scholar
  21. 21.
    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.PubMedCrossRefGoogle Scholar
  22. 22.
    Kisielow, M., Kleiner, S., Nagasawa, M., Faisal, A., and Nagamine, Y. (2002) Isoform-specific knockdown and expression of adaptor protein ShcA using small interfering RNA. Biochem. J. 363, 1–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Miller, V. M., Xia, H., Marrs, G. L., Gouvion, C. M., Lee, G., Davidson, B. L., and Paulson, H. L. (2003) Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci. USA 100, 7195–7200.PubMedCrossRefGoogle Scholar
  24. 24.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247.PubMedCrossRefGoogle Scholar
  25. 25.
    Lassus, P., Rodriguez, J., and Lazebnik, Y. (2002) Confirming specificity of RNAi in mammalian cells. Sci. STKE 147, PL13.Google Scholar
  26. 26.
    Lassus, P., Opitz-Araya, X., and Lazebnik, Y. (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297, 1352–1354.PubMedCrossRefGoogle Scholar
  27. 27.
    Forler, D., Kocher, T., Rode, M., Gentzel, M., Izaurralde, E., and Wilm, M. (2003) An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat. Biotechnol. 21, 89–92.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Patrick J. Paddison
    • 1
  • Amy A. Caudy
    • 1
  • Ravi Sachidanandam
    • 1
  • Gregory J. Hannon
    • 1
  1. 1.Cold Spring Harbor LaboratoryWatson School of Biological SciencesCold Spring Harbor

Personalised recommendations