High-Throughput Expression in Microplate Format in Saccharomyces cerevisiae

  • Caterina Holz
  • Christine Lang
Part of the Methods in Molecular Biology book series (MIMB, volume 267)


We have developed a high-throughput technology that allows parallel expression, purification, and analysis of large numbers of cloned cDNAs in the yeast Saccharomyces cerevisiae. The technology is based on a vector for intracellular protein expression under control of the inducible CUP1 promoter, where the gene products are fused to specific peptide sequences. These N-terminal and C-terminal epitope tags allow the immunological identification and purification of the gene products independent of the protein produced. By introducing the method of recombinational cloning we avoid time-consuming re-cloning steps and enable the easy switching between different expression vectors and host systems.

Key Words

Saccharomyces cerevisiae microplate format CUP1 promoter epitope tagging 


  1. 1.
    Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.PubMedCrossRefGoogle Scholar
  2. 2.
    Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.PubMedCrossRefGoogle Scholar
  3. 3.
    Nilsson, J., Stahl, S., Lundeberg, J., Uhlen, M., and Nygren, P. A. (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr. Purif. 11, 1–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Holz, C., Hesse, O., Bolotina, N., Stahl, U., and Lang, C. (2002) A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae. Protein Expr. Purif. 25, 372–378.PubMedCrossRefGoogle Scholar
  5. 5.
    Lang, C. and Looman, A. C. (1995) Efficient expression and secretion of Aspergillus niger RH5344 polygalacturonase in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 44, 147–156.PubMedCrossRefGoogle Scholar
  6. 6.
    Etcheverry, T. (1990) Induced expression using yeast copper metallothionein promoter. Methods Enzymol. 185, 319–329.PubMedCrossRefGoogle Scholar
  7. 7.
    Voss, S. and Skerra, A. (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng. 10, 975–982.PubMedCrossRefGoogle Scholar
  8. 8.
    Porath, J., Carlsson, J., Olsson, I., and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598–599.PubMedCrossRefGoogle Scholar
  9. 9.
    Sambrook, J., Fritsch, E. F., and Maniatis, T., (1989) Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  10. 10.
    Holz, C., Prinz, B., Bolotina, N., Sievert, V., Büssow, K., Simon, B., et al. (2003) Establishing the yeast Saccharomyces cerevisiae as a system for expression of human proteins on a proteome-scale. J. Struct. Funct. Genomics 4, 97–108.PubMedCrossRefGoogle Scholar
  11. 11.
    Gietz, D., St Jean, A., Woods, R. A., and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425.Google Scholar
  12. 12.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  13. 13.
    Erhart, E. and Hollenberg, C. P. (1983) The presence of a defective LEU2 gene on 2 mu DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J. Bacteriol. 156, 625–635.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Caterina Holz
    • 1
  • Christine Lang
    • 1
  1. 1.Berlin Technical UniversityInstitute for BiotechnologyBerlinGermany

Personalised recommendations