Advertisement

Cell-Free Protein Synthesis With Prokaryotic Combined Transcription-Translation

  • James R. Swartz
  • Michael C. Jewett
  • Kim A. Woodrow
Part of the Methods in Molecular Biology book series (MIMB, volume 267)

Abstract

Cell-free biology exploits and studies complex biological processes in a controlled environment without intact cells. One model system is prokaryotic cell-free protein synthesis. This technology offers an attractive and convenient approach to produce properly folded recombinant DNA (rDNA) proteins on a laboratory scale, screen PCR fragment libraries in a high-throughput format, express pharmaceutical proteins, incorporate labeled or unnatural amino acids into proteins, and activate microbial physiology to allow for investigation of biological systems. We describe the preparation of materials necessary for the expression, quantification, and purification of rDNA proteins from active Escherichia coli extracts.

Key Words

Prokaryotic combined transcription-translation S30 extract cell-free protein synthesis in vitro chloramphenicol acetyl transferase T7 bacteriophage RNA polymerase protein purification 

References

  1. 1.
    Jewett, M. C., Voloshin, A., and Swartz, J. R. (2002) Prokaryotic systems for in vitro expression, in Gene Cloning and Expression Technologies (Weiner, M. P., and Lu, Q., eds.), Eaton Publishing, Westborough, MA, pp. 391–411.Google Scholar
  2. 2.
    Kim, D. M., and Swartz, J. R. (2001) Regeneration of ATP from glycolytic intermediates for cell-free protein synthesis. Biotechnol. Bioeng. 74, 309–316.PubMedCrossRefGoogle Scholar
  3. 3.
    Jermutus, L., Ryabova, L. A., and Pluckthun, A. (1998) Recent advances in producing and selecting functional proteins by using cell-free translation. Curr. Opin. Biotechnol. 9, 534–548.PubMedCrossRefGoogle Scholar
  4. 4.
    Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T., et al. (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 442, 15–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim, R. G. and Choi, C. Y. (2000) Expression-independent consumption of substrates in cell-free expression system from Escherichia coli. J. Biotechnol. 84, 27–32.CrossRefGoogle Scholar
  6. 6.
    Kim, D. M. and Swartz, J. R. (1999) Prolonging cell-free protein synthesis with a novel ATP regeneration system. Biotechnol. Bioeng. 66, 180–188.PubMedCrossRefGoogle Scholar
  7. 7.
    Nakano, H. and Yamane, T. (1998) Cell-free protein synthesis systems. Biotechnol. Adv. 16, 367–384.PubMedCrossRefGoogle Scholar
  8. 8.
    Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., and Ueda, T. (2001) Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755.PubMedCrossRefGoogle Scholar
  9. 9.
    Stiege, W. and Erdmann, V. A. (1995) The potentials of the in vitro protein biosynthesis system. J. Biotechnol. 41, 81–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Yokoyama, S., Matsuo, Y., Hirota, H., Kigawa, T., Shirouzu, M., Kuroda, Y., et al. (2000) Structural genomics projects in Japan. Pro. Biophys. Mol. Biol. 72, 363–376.CrossRefGoogle Scholar
  11. 11.
    Alimov, A. P., Khmelnitsky, A. Y., Simonenko, P. N., Spirin, A. S., and Chetverin, A. B. (2000) Cell-free synthesis and affinity isolation of proteins on a nanomole scale. BioTechniques 28, 338–344.PubMedGoogle Scholar
  12. 12.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning, A Laboratory Manual, 2 ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  13. 13.
    Davanloo, P., Rosenberg, A. H., Dunn, J. J., and Studier, F. W. (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 81, 2035–2039.PubMedCrossRefGoogle Scholar
  14. 14.
    Pratt, J. M. (1984) Coupled transcription-translation in prokaryotic cell-free systems, in Transcription and Translation: A Practical Approach (Hames, B. D. and Higgins, S. J., eds.), IRL Press, New York, NY, pp. 179–209.Google Scholar
  15. 15.
    Kim, D. M., Kigawa, T., Choi, C. Y., and Yokoyama, S. (1996) A highly efficient cell-free protein synthesis system from Escherichia coli. Eur. J. Biochem. 239, 881–886.PubMedCrossRefGoogle Scholar
  16. 16.
    Shaw, W. V. (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol. 43, 737–755.PubMedCrossRefGoogle Scholar
  17. 17.
    Jewett, M. C. and Swartz, J. R. (2004) Rapid expression and purification of 100 nmol quantities of active protein using cell-free protein synthesis. Biotechnol. Prog. In press.Google Scholar
  18. 18.
    Muller, D. K., Martin, C. T., and Coleman, J. E. (1988) Processivity of proteolytically modified forms of T7 RNA polymerase. Biochemistry 27, 5763–5771.PubMedCrossRefGoogle Scholar
  19. 19.
    Michel-Reydellet, N., Calhoun, K. A., and Swartz, J. R. (2004) Amino acid stabilization for cell-free protein synthesis by modification of the E. coli genome. Metabolic Engineering. In press.Google Scholar
  20. 20.
    Schindler, P. T., Baumann, S., Reuss, M., and Siemann, M. (2000) In vitro transcription translation: effects of modification in lysate preparation on protein composition and biosynthesis activity. Electrophoresis 21, 2606–2609.PubMedCrossRefGoogle Scholar
  21. 21.
    Spirin, A. S., Baranov, V. I., Ryabova, L. A., Ovodov, S. Y., and Alakhov, Y. B. (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242, 1162–1164.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim, D. M. and Swartz, J. R. (2000) Prolonging cell free protein synthesis by selective reagent additions. Biotechnol. Prog. 16, 385–390.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • James R. Swartz
    • 1
  • Michael C. Jewett
    • 1
  • Kim A. Woodrow
    • 1
  1. 1.Department of Chemical EngineeringStanford UniversityStanford

Personalised recommendations