Recombinant Gene Expression pp 77-90

Part of the Methods in Molecular Biology book series (MIMB, volume 267)

Back to Basics

pBR322 and Protein Expression Systems in E. coli
  • Paulina Balbás
  • Francisco Bolívar

Abstract

The extensive variety of plasmid-based expression systems in E. coli resulted from the fact that there is no single strategy for achieving maximal expression of every cloned gene. Although a number of strategies have been implemented to deal with problems associated to gene transcription and translation, protein folding, secretion, location, posttranslational modifications, particularities of different strains, and the like and more integrated processes have been developed (1,2), the basic plasmid-borne elements and their interaction with the particular host strain will influence the overall expression system and final productivity (3) (seeChapters 13).

Plasmid vector pBR322 (4) is a well-established multipurpose cloning vector in laboratories worldwide, and a large number of derivatives have been created for specific applications and research purposes, including gene expression in its natural host, E. coli, and few other bacteria. The early characterization of the molecule, including its nucleotide sequence, replication and maintenance mechanisms, and determination of its coding regions, accounted for its success, not only as a universal cloning vector, but also as a provider of genes and an origin of replication for other intraspecies vectors (5,6). Since the publication of the aforementioned reviews, novel discoveries pertaining to these issues have appeared in the literature that deepen the understanding of the plasmid’s features, behavior, and impact in gene expression systems, as well as some important strain characteristics that affect plasmid replication and stability.

The objectives of this review include updating and discussing the new information about (1) the replication and maintenance of pBR322; (2) the host-related modulation mechanisms of plasmid replication; (3) the effects of growth rate on replication control, stability, and recombinant gene expression; (4) ways for plasmid amplification and elimination. Finally, (5) a summary of novel ancillary studies about pBR322 is presented.

Key Words

Integration excision replication Rop/Rom 

References

  1. 1.
    Balbás, P. (2001) Understanding the art of producing protein and non protein molecules in E. coli. Mol. Biotechnol. 19, 251–267.PubMedGoogle Scholar
  2. 2.
    Swartz, J. R. (2001) Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol. 12, 195–201.PubMedGoogle Scholar
  3. 3.
    Balbás, P. and Bolívar, F. (1990) Design and construction of expression plasmid vectors in Escherichia coli. Methods Enzymol. 185, 3–40.Google Scholar
  4. 4.
    Bolívar, F., Rodríguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L., Boyer, H. W., et al. (1976) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2, 95–113.Google Scholar
  5. 5.
    Balbás, P., Soberón, X., Merino, E., Zurita, M., Lomelí, H., Valle, F., et al. (1986) Plasmid vector pBR322 and its special-purpose derivatives: a review. Gene 50, 3–40.PubMedGoogle Scholar
  6. 6.
    Balbás, P., Soberón, X., Bolívar, F., and Rodríguez, R. L. (1988) The plasmid, pBR322, in Vectors. A Survey of Molecular Cloning Vectors and Their Uses (Rodríguez, R. L. and Denhardt, D. T., eds.) Butterworth, pp. 5–41.Google Scholar
  7. 7.
    Covarrubias, L., and Bolívar, F. (1982) Construction and characterization of new cloning vehicles. VI. Plasmid pBR329, a new derivative of pBR328 lacking the 482-base-pair inverted duplication. Gene 17, 79–89.PubMedGoogle Scholar
  8. 8.
    Mohanty, B. K., Sahoo, T., and Bastia, D. (1998) Mechanistic studies on the impact of transcription on sequence-specific termination of DNA replication and vice versa. J. Biol. Chem. 30, 3051–3059.Google Scholar
  9. 9.
    Bussiere, D. E. and Bastia, D. (1999) Termination of DNA replication of bacterial and plasmid chromosomes. Mol. Microbiol. 31, 1611–1618.PubMedGoogle Scholar
  10. 10.
    Ohmori, H., Murakami, Y., and Nagata, T. (1987) Nucleotide sequences required for a ColE1-type plasmid to replicate in Escherichia coli cells with or without RNase H. J. Mol. Biol. 20, 223–234.Google Scholar
  11. 11.
    Chiang, C. S., Xu, Y. C. and Bremer, H. (1991) Role of DnaA protein during replication of plasmid pBR322 in Escherichia coli. Mol. Gen. Genet. 225, 435–442.PubMedGoogle Scholar
  12. 12.
    Minden, J. S. and Marians, K. J. (1985) Replication of pBR322 DNA in vitro with purified proteins. Requirement for topoisomerase I in the maintenance of template specificity. J. Biol. Chem. 260, 9316–9325.PubMedGoogle Scholar
  13. 13.
    Parada, C. A. and Marians, K. J. (1989) Transcriptional activation of pBR322 DNA can lead to duplex DNA unwinding catalyzed by the Escherichia coli preprimosome. J. Biol. Chem. 264, 15120–15129.PubMedGoogle Scholar
  14. 14.
    Masai, H. and Arai, K. (1989) Escherichia coli dnaT gene function is required for pBR322 plasmid replication but not for R1 plasmd replication. J. Bacteriol. 171, 2975–2980.PubMedGoogle Scholar
  15. 15.
    Del Solar, G., Giraldo, R., Ruiz-Echevarría, M. J., Espinosa, M. and Díaz-Orejas, R. (1998) Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 434–464.PubMedGoogle Scholar
  16. 16.
    Lee, E. H. and Kornberg, A. (1991) Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n’protein. Proc. Natl. Acad. Sci. USA 15, 3029–3032.Google Scholar
  17. 17.
    Lin-Chao, S. and Bremer, H. (1987) Activities of the RNA I and RNA II promoters of plasmid pBR322. J. Bacteriol. 169, 1217–1222.PubMedGoogle Scholar
  18. 18.
    Brenner, M. and Tomizawa, J. (1991) Quantitation of ColE1-encoded replication elements. Proc. Natl. Acad. Sci. USA 88, 405–409.PubMedGoogle Scholar
  19. 19.
    Liang, S., Bipatnath, M., Xu, Y., Chen, S., Dennis, P., Ehrenberg, M., et al. (1999) Activities of constitutive promoters in Escherichia coli. J. Mol. Biol. 292, 19–37.PubMedGoogle Scholar
  20. 20.
    Polisky, B. (1988) ColE1 replication control circuitry: sense from antisense. Cell 55, 929–932.PubMedGoogle Scholar
  21. 21.
    Chiang, C. S. and Bremer, H. (1991b) Maintenance of pBR322-derived plasmids without functional RNA I. Plasmid 26, 186–200.PubMedGoogle Scholar
  22. 22.
    Ivanov, I., Yavashev, L., Gigova, I., Alexciev, K., and Christo, C. (1988) A conditional high-copy-number plasmid derivative of pBR322. Microbiologica 11, 95–99.PubMedGoogle Scholar
  23. 23.
    Nugent, M. E., Smith, T. J. and Tacon, W. C. (1986) Characterization and incompatibility properties of ROM-derivatives of pBR322-based plasmids. J. Gen. Microbiol. 132, 1021–1026.PubMedGoogle Scholar
  24. 24.
    Lin-Chao, S. and Cohen, S. N. (1991) The rate of processing and degradation of antisense RNA I regulates replication of ColE1-type plasmids in vivo. Cell 65, 1233–1242.PubMedGoogle Scholar
  25. 25.
    Bouvet, P. and Belasco, J. G. (1991) Control of RNAseE-mediated RNA degradation by 5′-terminal base-pairing in E. coli. Nature 360, 488–491.Google Scholar
  26. 26.
    Kushner, S. R. (1996) mRNA decay. In Escherichia coli and Salmonella. Cellular and Molecular Biology. 2nd ed. (Niedhardt et al., eds.), ASM Press, Washington, D.C.Google Scholar
  27. 27.
    Jung, Y. H. and Lee, Y. (1995) RNAses in ColE1 DNA metabolism. Mol. Biol. Rep. 22, 195–200.PubMedGoogle Scholar
  28. 28.
    Binnie, U., Wong, K., McAteer, S. and Masters, M. (1999) Absence of RNAse III alters the pathway by which RNA I, the antisense inhibitor of ColE1 replication, decays. Microbiology 145, 3089–3100.PubMedGoogle Scholar
  29. 29.
    Kaberdin, V. R., Chao, Y. H. and Lin-Chao, S. (1996) RNAse E cleaves at multiple sites in bubble regions of RNA I stem-loops yielding products that dissociate differentially from the enzyme. J. Biol. Chem. 271, 13103–13109.PubMedGoogle Scholar
  30. 30.
    Lin-Chao, S., Wong, T. T., McDorwall, K. J., and Cohen, S. N. (1994) Effects of nucleotide sequence on the specificity of rne-dependent and RNAseE-mediated cleavages of RNA I encoded by the pBR322 plasmid. J. Biol. Chem. 269, 10797–10803.PubMedGoogle Scholar
  31. 31.
    Lopilato, J., Bortner, S., and Beckwith, J. (1986) Mutations in a new chromosomal gene of Escherichia coli K-12, reduce plasmid copy number of pRB322 and its derivatives. Mol. Gen. Genet. 205, 285–290.PubMedGoogle Scholar
  32. 32.
    Liu, J. and Parkinson, J. S. (1989) Genetics and sequence analysis of the pcnB locus, an Escherichia coli gene involved in plasmid copy number control. J. Bacteriol. 171, 1254–1261.PubMedGoogle Scholar
  33. 33.
    He, L., Söderbom, F., Wagner, G. H., Binnie, U., Binns, N. and Masters, M. (1993) PcnB is required for the rapid degradation of RNA I, the antisense RNA that controls the copy number of ColE1-related plasmids. Molec. Microbiol. 9, 1131–1142.Google Scholar
  34. 34.
    Xu, F., Lin-Chao, S. and Cohen, S. N. (1993) The Escherichia coli pcnB gene promotes adenylation of antisense RNAI of ColE1-type plasmids in vivo and degradation of RNAI decay intermediates. Proc. Natl. Acad. Sci. USA 90, 6756–6760.PubMedGoogle Scholar
  35. 35.
    Mohanty, B. K. and Kushner, S. R. (2000) Polynucleotide phosphorilase functions both as a 3′ right-arrow 5′ exonuclease and poly(A) polymerase in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 11966–11971.PubMedGoogle Scholar
  36. 36.
    Soberón, X., Covarrubias, L. and Bolívar, F. (1980) Construction and characterization of new cloning vehicles. IV. Deletion derivatives of pBR322 and pBR325. Gene 9, 287–305.PubMedGoogle Scholar
  37. 37.
    Zurita, M., Bolívar, F. and Soberón, X. (1984) Construction and characterization of new cloning vehicles. VII. Construction of plasmid pBR327par, a completely sequenced, stable derivative of pBR327 containing the par locus of pSC101. Gene 28, 119–122.PubMedGoogle Scholar
  38. 38.
    Vieira, J. and Messing, J. (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259–268.PubMedGoogle Scholar
  39. 39.
    Sozhamannan, S., Morris J. G. Jr., and Stitt, B. L. (1999) Instability of pUC19 in Escherichia coli transcription termination factor mutant, rho026. Plasmid 41, 63–69.PubMedGoogle Scholar
  40. 40.
    Atlung, T., Christensen, B. B., and Hansen, F. G. (1999) Role of the Rom protein in copy number control of plasmid pBR322 at diffrerent growth rates in Escherichia coli K-12. Plasmid 41, 110–119.PubMedGoogle Scholar
  41. 41.
    Lin-Chao, S., Chen, W. T., and Wong, T. T. (1992) High copy number of the pUC plasmids results from a Rom/Rop-supressible point mutation in RNA II. Mol. Microbiol. 6, 3385–3393.PubMedGoogle Scholar
  42. 42.
    Malki, A., Kern, R., Kohiyama, M., and Huges, P. (1992) Inhibition of DNA synthesis at the hemimethylated pBR322 origin of replication by a cell membrane function. Nucleic Acids Res. 20, 105–109.PubMedGoogle Scholar
  43. 43.
    Russell, D. W. and Zinder, N. D. (1987) Hemimethylation prevents DNA replication in E. coli. Cell 50, 1071–1079.PubMedGoogle Scholar
  44. 44.
    Patnaik, P. K., Merlin, S. and Polisky, B. (1990) Effect of altering GATC sequences in the plasmid ColE1 primer promoter. J. Bacteriol. 172, 1762–1764.PubMedGoogle Scholar
  45. 45.
    McDermott, P. J., Gowland, P., and Gowland, P. C. (1993) Adaptation of Escherichia coli growth rates to the presence of pBR322. Lett. Appl. Microbiol. 17, 139–143.PubMedGoogle Scholar
  46. 46.
    Paulson, J. and Ehrenberg, M. (1998) Trade-off between segregational stability and metabolic burden: a mathematical model of plasmid ColE1 replication control. J. Mol. Biol. 279, 73–88.Google Scholar
  47. 47.
    Eisenbraun, M. D. and Griffith, J. K. (1993) Effects of plasmid pBR322 on respiratory and ATPase activities in Escherichia coli. Plasmid 30, 159–162.PubMedGoogle Scholar
  48. 48.
    Bremer, H. and Lin-Chao, S. (1986) Analysis of the physiological control of replication of ColE1-type plasmids. J. Theor. Biol. 123, 453–470.PubMedGoogle Scholar
  49. 49.
    Weber, A. E. and San, K. Y. (1987) Persistence and expression of the plasmid pBR322 in Eschericha coli K-12 cultured in complex medium. Biotechnol. Lett. 9, 757–760.Google Scholar
  50. 50.
    Duttweiler, H. M. and Gross, D. S. (1998) Bacterial growth medium that significantly increases the yield of recombinant plasmid. Biotechniques 24, 438–444.PubMedGoogle Scholar
  51. 51.
    Lin-Chao, S. and Bremer, H. (1986) Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli. Mol. Gen. Genet. 203, 143–149.PubMedGoogle Scholar
  52. 52.
    Gasunov, V. V. and Brilkov, A. V. (2002) Estimating the instability parameters of plasmid-bearing cells. I. Chemostat culture. J. Theor. Biol. 219, 193–205.Google Scholar
  53. 53.
    Herman, A., Wegrzyn, A., and Wegrzyn, G. (1994) Regulation of replication of plasmid pBR322 in amino acid-starved Escherichia coli strains. Mol. Gen. Genet. 243, 374–378.PubMedGoogle Scholar
  54. 54.
    Wrobel, B., and Wegrzyn, G. (1998) Replication regulation of ColE1-like plasmids in amino acid-starved Escherichia coli. Plasmid 39, 48–62.PubMedGoogle Scholar
  55. 55.
    Wang, Z., Le, G., Shi, Y., Wegrzyn, G., and Wrobel, B. (2002) A model for regulation of ColE1-like plasmid replication by uncharged tRNAs in amino acid-starved Escherichia coli cell. Plasmid 47, 69–78.PubMedGoogle Scholar
  56. 56.
    Kim, B. G., Good, T. A., Ataai, M. M., and Shuler, M. L. (1987) Growth behaviour and prediction of copy number and retention of ColE1-type plasmids in E. coli under slow growth conditions. Ann. N.Y. Acad. Sci. 506, 384–395.PubMedGoogle Scholar
  57. 57.
    Torkel-Nielsen, T. and Boe, L. (1994) A statistical analysis of the formation of plasmid-free cells in populations of Escherichia coli. J. Bacteriol. 176, 4306–4310.Google Scholar
  58. 58.
    Lee, S. B. and Bailey, J. E. (2002) Analysis of growth rate effects on productivity of recombinant Escherichia coli populations using molecular mechanism models. Biotechnol. Bioeng. 79, 550–557.PubMedGoogle Scholar
  59. 59.
    Weston-Hafer, K. and Berg, D. E. (1991) Deletions in plasmid pBR322: replication slippage involving leading and lagging strands. Genetics 128, 487.Google Scholar
  60. 60.
    Vilette, D., Ehrlich, S. D. and Michel, B. (1995) Transcription-induced deletions in Escherichia coli plasmids. Mol. Microbiol. 17, 493–504.PubMedGoogle Scholar
  61. 61.
    Olavarrieta, L., Hernández, P., Krimer, D. B., and Schvartzman, J. B. (2002) DNA knotting caused by head-on collision of transcription and replication. J. Mol. Biol. 322, 1–6.PubMedGoogle Scholar
  62. 62.
    Sogo, J. M., Stasiak, A., Martínez-Robles, M. L., Krimer, D. B., Hernández, P., and Schvartzman, J. B. (1999) Formation of knots in partially replicated DNA molecules. J. Mol. Biol. 286, 637–643.PubMedGoogle Scholar
  63. 63.
    Benham, C. J. (1993) Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory loci. Proc. Natl. Acad. Sci. USA 90, 2999–3003.PubMedGoogle Scholar
  64. 64.
    Frenkel, L. and Bremer, H. (1986). Incresased concentration of plasmid pBR322 and pBR327 by low concentrations of chloramphenicol. DNA 5, 539–544.PubMedGoogle Scholar
  65. 65.
    Schroetel, A., Riethdorf, S. and Hecker, M. (1988) Amplification of different ColE1 plasmids in Escherichia coli relA strain. J. Basic Microbiol. 28, 553–555.Google Scholar
  66. 66.
    Riethdorf, S., Schroeter, A., and Hecker, M. (1989) RelA mutation and pBR322 plasmid amplification in amino acid-starved cells of Escherichia coli. Genet. Res. 54, 167–171.PubMedGoogle Scholar
  67. 67.
    Hofmann, K. H., Neubauer, P., Riethdorf, S., and Hecker, M. (1990) Amplification of pBR322 plasmid DNA in Escherichia coli relA strains during batch and fed-batch fermentation. J. Basic. Microbiol. 30, 37–41.PubMedGoogle Scholar
  68. 68.
    Wolfson, J. S., Hooper, D. C., Swartz, M. N., and McHugh, G. L. (1982) Antagonism of the B subunit of DNA gyrase eliminates plasmids pBR322 and pMG110 from Escherichia coli. J. Bacteriol. 152, 338–344.PubMedGoogle Scholar
  69. 69.
    Ishii, S., Murakami, T. and Shishido, K. (1991) Gyrase inhibitors increase the content of knotted DNA species of plasmid pBR322 in Escherichia coli. J. Bacteriol. 173, 5551–5553.PubMedGoogle Scholar
  70. 70.
    Lakshmi, V. V. and Polasa, H. (1991) Curing of pBR322 and pBR329 plasmids in Escherichia coli by cis-dichlorodiamine platinum (II) chloride (Cis-DDP). FEMS Microbiol. Lett. 62, 281–284.PubMedGoogle Scholar
  71. 71.
    Lakshmi, V. V., Sridhar, P., Khan, B. T., and Polasa, H. (1988) Mixed-ligand complexes of platinum (II) as curing agents for pBR322 and pBR329 (ColE1) plasmids in Escherichia coli. J. Gen. Microbiol. 134, 1977–1981.PubMedGoogle Scholar
  72. 72.
    Brahati, A. and Polasa, H. (1990) Elimination of ColE1 group (pBR322 and pBR329) plasmids in Escherichia coli by alpha-satonin. FEMS Microbiol. Lett. 56, 213–215.Google Scholar
  73. 73.
    Watson, N. (1988) A new revision of the sequence of plasmid pBR322. Gene 70, 399–403.PubMedGoogle Scholar
  74. 74.
    Valenzuela, M. S., Ikpeazu, E. V. and Siddiqui, K. A. (1996) E. coli growth inhibition by high copy number derivative of plasmid pBR322. Biochem. Biophys. Res. Commun. 27, 219.Google Scholar
  75. 75.
    Magee, T. R. and Kogoma, T. (1991) Rifampin-resistant replication of pBR322 derivatives in Escherichia coli cells induced for the SOS response. J. Bacteriol. 173, 4736–4741.PubMedGoogle Scholar
  76. 76.
    Parada, C. A. and Marians, K. J. (1991) Mechanism of DNA A protein-dependent pBR322 DNA replication. DNA A-mediated trans-strand loading of the DNA B protein at the origin of pBR322 DNA. J. Biol. Chem. 266, 18895–18906.PubMedGoogle Scholar
  77. 77.
    Silberstein, Z. and Cohen, A. (1987) Synthesis of linear multimers of oriC and pBR322 derivatives in Escherichia coli K-12: role of recombination and replication functions. J. Bacteriol. 169, 3131–3137.PubMedGoogle Scholar
  78. 78.
    Petersen, S. K. and Hansen, F. G. (1991) A missense mutation in the rpoC gene affects chromosomal replication control in E. coli. J. Bacteriol. 173, 5200–5206.PubMedGoogle Scholar
  79. 79.
    McNicholas, P., Chopra, I., and Rothstein, D. M. (1992) Genetic analysis of the tetA(C) gene on plasmid pBR322. J. Bacteriol. 174, 7926–7933.PubMedGoogle Scholar
  80. 80.
    Shishido, K., Ishii, S., and Komiyama, N. (1989) The presence of the region on pBR322 that encodes resistance to tetracycline is responsible for high levels of plasmid knotting in Escherichia coli DNA topoisomerase mutant. Nucleic Acids Res. 17, 9749–9759.PubMedGoogle Scholar
  81. 81.
    Allard, J. D. and Bertrand, K. P. (1992) Membrane topology of the pBR322 tetracycline resistance protein. J. Biol. Chem. 267, 17809–17819.PubMedGoogle Scholar
  82. 82.
    Lewis, G. S., Jewel, J. E., Phang, T. and Miller, K. W. (2002) Mutational analysis of tetracycline resistance protein transmembrane segment insertion. Arch. Biochem. Biophys. 404, 317–325.PubMedGoogle Scholar
  83. 83.
    McNicholas, P., McGlynn, M., Guay, G. G. and Rothstein, D. M. (1995) Genetic analysis suggests functional interactions between the N-and C-terminal domains of the TetA(C) efflux pump encoded by pBR322. J. Bacteriol. 177, 5355–5357.PubMedGoogle Scholar
  84. 84.
    Valenzuela, M. S., Siddiqui, K. A. and Sarkar, B. L. (1996) High expression of plasmid-encoded tetracycline resistance gene in E. coli causes a decrease in membrane-bound ATPase activity. Plasmid 36, 19–25.PubMedGoogle Scholar
  85. 85.
    Chiang, C. S. and Bremer, H. (1988) Stability of pBR322-derived plasmids. Plasmid. 20, 207–220.PubMedGoogle Scholar
  86. 86.
    Pruss, G. J. and Drlica, K. (1986) Topoisomerase I mutants: the gene on pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc. Natl. Acad. Sci. USA 83, 8952–8956.PubMedGoogle Scholar
  87. 87.
    Lodge, J. K., Kazic, T., and Berg, D. E. (1989) Formation of supercoiling domains in plasmid pBR322. J. Bacteriol. 171, 2181–2187.PubMedGoogle Scholar
  88. 88.
    Griffith, J. K., Cuellar, D. H., Fordyce, C. A., Hutchings, K. G., and Mondragón, A. A. (1994) Structure and function of the class C tetracycline/H+ antiporter: three dependent groups of phenotypes are conferred by TetA (C). Mol. Membr. Biol. 11, 271–277.PubMedGoogle Scholar
  89. 89.
    Stavropoulous, T. A. and Strathdee, C. A. (2000) Expression of the TetA (C) tetracycline efflux pump in Escherichia coli confers osmotic sensitivity. FEMS Microbiol. Lett. 190, 147–150.Google Scholar
  90. 90.
    Katayama, T. and Nagata, T. (1990) Inhibition of cell growth and stable DNA replication by overexpression of the bla gene of plasmid pBR322 in Escherichia coli. Molec. Gen. Genet. 223, 353–360.PubMedGoogle Scholar
  91. 91.
    Kuriki, Y. (1987) Requirement of a heat-labile factor(s) for in vivo expression of the amp gene of pBR322. J. Bacteriol. 169, 5856–5858.PubMedGoogle Scholar
  92. 92.
    Berg, C. M., Liu, L., Coon, M., Gray, P., Vartak, N. B., Brown, M., et al. (1989) pBR322-derived multicopy plasmids harboring large inserts are often dimmers in Escherichia coli K-12. Plasmid 21, 138–141.PubMedGoogle Scholar
  93. 93.
    Boyd, L. A., Woytowich, A. and Selvaraj, G. (1993) Target sequence specificity of transposon Tn5 in the absence of major hotspots in the plasmid pBR322: identification of a new hotspot. Plasmid 30, 155–158.PubMedGoogle Scholar
  94. 94.
    Lodge, J. K, and Berg, D. E. (1990) Mutations that affect Tn5 insertion into pBR322: importance of local supercoiling. J. Bacteriol. 172, 5956–5960.PubMedGoogle Scholar
  95. 95.
    Gamas, P., Chandler, M. G., Prentki, P., and Galas, D. J. (1987) Escherichia coli integration host factor binds specifically to the ends of the insertion sequence IS1 and to its major insertion hotspot in pBR322. J. Mol. Biol. 195, 261–272.PubMedGoogle Scholar
  96. 96.
    Hogget, J. G. and Brierley, I. (1992) Kinetics of activation of the P4 promoter by Escherichia coli cyclic AMP receptor protein. Biochem. J. 287, 937–941.Google Scholar
  97. 97.
    Brierley, I. and Hogget, J. G. (1992) Binding of the cyclic AMP receptor protein of Escherichia coli and DNA bending at the P4 promoter of pBR322. Biochem. J. 285, 91–97.PubMedGoogle Scholar
  98. 98.
    Zhang, P. and Omaye, S. T. (2001) DNA strand breakage and oxygen tension: effects of beta-carotene, alpha-tocopherol and ascorbic acid. Food Chem. Toxicol. 39, 239–246.PubMedGoogle Scholar
  99. 99.
    Rajagopalan, R., Wani, K., Huilgol, N. G., Kagiya, T. V., and Nair, C. K. (2002) Inhibition of gamma-radiation induced DNA damage in plasmid pBR322 by TMG, a water soluble derivative of vitamin E. J. Radiat. Res. 43, 153–159.PubMedGoogle Scholar
  100. 100.
    Melchior, W. B., Jr., Marques, M. M. and Beland, F. A. (1994) Mutations induced by aromatic amine DNA adducts in pBR322. Carcinogenesis 15, 889–899.PubMedGoogle Scholar
  101. 101.
    Kumar, S. S., Chaubey, R. C., Devasagayam, T. P., Priyadarsini, K. I., and Chauhan, P. S. (1999) Inhibition of radiation-induced DNA damage in plasmid pBR322 by chlorophyllin and possible mechanism(s) of action. Mutat Res. 425, 71–79.PubMedGoogle Scholar
  102. 102.
    Kumar, S. S., Devasagayan, T. P., Jayashree, B. and Kesavan, P. C. (2001) Mechanism of protection against radiation-induced DNA damage in plasmid pBR322 by caffeine. Int. J. Radiat. Biol. 77, 617–623.PubMedGoogle Scholar
  103. 103.
    Lourencini da Silva, R., Albano, F., Lopes do Santos, L. R., Tavares, A. D. Jr., and Felzenszwall, I. (2000) The effect of electromagnetic field exposure on the formation of DNA lesions. Redox Rep. 5, 299–301.Google Scholar
  104. 104.
    Levi, B. and Werman, M. J. (2001) Fructose triggers DNA modifications and damage in an Escherichia coli plasmid. J. Nutr. Biochem. 12, 235–241.PubMedGoogle Scholar
  105. 105.
    Vanella, A., Russo, A., Acquaviva, R., Campisi, A., Di Giacomo, C., Sorrenti V. et al. (2000) L-propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector. Cell. Biol. Toxicol. 16, 99–104PubMedGoogle Scholar
  106. 106.
    Adam, W., Hartung, J., Okamoto, H., Saha-Moller, C. R., and Spehar, K. (2000) N-hydroxy-4-(4-chlorophenyl)thiazole-2(3H)-thione as a photochemical hydroxyl-radical source: photochemistry and oxidative damage of DNA (strand breaks) and 2′-deoxyguanosine (8-oxodG formation). Photochem Photobiol. 72, 619–64.PubMedGoogle Scholar
  107. 107.
    Onoa, G. B. and Moreno, V. (2002) Study of the modifications caused by cisplatin, transplatin, and Pd(II) and Pt(II) mepirizole derivatives on pBR322 DNA by atomic force microscopy. Int. J. Pharm. 245, 55–65.PubMedGoogle Scholar
  108. 108.
    Balbás, P. and Gosset, G. (2001) Chromosomal editing in Escherichia coli: vectors for DNA integration and excision. Mol. Biotechnol. 19, 1–12.PubMedGoogle Scholar
  109. 109.
    Balbás, P. and Bolivar, F. (1998) Molecular cloning by plasmid vectors. in Recombinant DNA. Principles and Applications (Greene, J. J. and Rao, V. B. eds.), Marcel Dekker, Inc., New York, NY, pp. 383–411.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Paulina Balbás
    • 1
  • Francisco Bolívar
    • 2
  1. 1.Centro de Investigación en BiotecnologíaUAEMCuernavacaMéxico
  2. 2.Instituto de BiotecnologíaUNAMCuernavacaMéxico

Personalised recommendations