Production of Recombinant Proteins

Challenges and Solutions
  • Laura A. Palomares
  • Sandino Estrada-Moncada
  • Octavio T. Ramírez
Part of the Methods in Molecular Biology book series (MIMB, volume 267)


Efficient strategies for the production of recombinant proteins are gaining increasing importance, as more applications that require high amounts of high-quality proteins reach the market. Higher production efficiencies and, consequently, lower costs of the final product are needed for obtaining a commercially viable process. In this chapter, common problems in recombinant protein production are reviewed and strategies for their solution are discussed. Such strategies include molecular biology techniques, as well as manipulation of the culture environment. Finally, specific problems relevant to different hosts are discussed (see  Chapters 1 and  3).

Key Words

Fermentation prokaryotes yeasts fungi animal cells 


  1. 1.
    Margaritis, A. and Bassi, A. S. (1991) Plasmid stability of recombinant DNA microorganisms, in Recombinant DNA Technology and Applications. (Prokop, A., Bajpai, R. K., and Ho, C., eds.) McGraw-Hill, New York, NY, pp. 316–332.Google Scholar
  2. 2.
    Paulsson, J. and Ehrenberg, M. (2001) Noise in a minimal regulatory network: plasmid copy number control. Q. Rev. Biophys. 34, 1–59.PubMedGoogle Scholar
  3. 3.
    Corchero, J. L. and Villaverde, A. (1998) Plasmid maintenance in Escherichia coli recombinant cultures is dramatically, steadily, and specifically influenced by features of the encoded proteins. Biotechnol. Bioeng. 58, 625–632.PubMedGoogle Scholar
  4. 4.
    Summers, D. (1998) Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Mol. Microbiol. 29, 1137–1145.PubMedGoogle Scholar
  5. 5.
    Baneyx, F. (1999) Recombinant protein expression in Escherichia coli. Curr. Op. Biotechnol. 10, 411–421.Google Scholar
  6. 6.
    Lewin, B. (1997) Genes VI. Oxford University Press, New York, NY, pp. 460–463.Google Scholar
  7. 7.
    Ramírez, O. T., Flores, E., and Galindo, E. (1995) Products and bioprocesses based on genetically modified organisms: review of engineering issues and trends in the literature. Asia-Pacific J. Mol. Biol. Biotechnol. 3, 165–197.Google Scholar
  8. 8.
    Swartz, J. R. (2001) Advances in Escherichia coli production of therapeutic proteins. Curr. Op. Biotechnol. 12, 195–201.Google Scholar
  9. 9.
    Sayadi, S., Nasri, M., Berry, F., Barbotin, J. N., and Thomas, D. (1987) Effect of temperature on the stability of plasmid pTG201-and productivity of xylE gene product in recombinant Escherichia coli: development of a two-stage chemostat with free and immobilized cells. J. Gen. Microbiol. 133, 1901–1908.PubMedGoogle Scholar
  10. 10.
    Prazeres, D. M. F., Ferreira, G. N. M., Monteiro, G. A., Cooney, C. L., and Cabral, J. M. S. (1999) Large-scale production of pharmaceutical-grade plasmid DNA gene therapy: problems and bottlenecks. Trends Biotechnol. 17, 169–174.PubMedGoogle Scholar
  11. 11.
    Balbás, P. and Gosset, G. (2001) Chromosomal editing in Escherichia coli. Vectors for DNA integration and excision. Mol. Biotechnol. 19, 1–12.PubMedGoogle Scholar
  12. 12.
    Balbás, P. (2001) Understanding the art of producing protein and nonprotein molecules in Escherichia coli. Mol. Biotechnol. 19, 251–267.PubMedGoogle Scholar
  13. 13.
    Olson, P., Zhang, Y., Olsen, D., Owens, A., Cohen, P., Nguyen, K., et al. (1998) High-level expression of eukaryotic polypeptides from bacterial chromosomes. Protein Express. Purif. 14, 160–166.Google Scholar
  14. 14.
    Twyman, R. M. and Whitelaw, B. (2000) Genetic engineering: Animal cell technology, in The Encyclopedia of Cell Technology (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 737–819.Google Scholar
  15. 15.
    Sanders, P. G. (1990) Protein production by genetically engineered mammalian cell lines, in Animal Cell Biotechnology Vol. 4 (Spier, R. E. and Griffiths, J. B., eds.) Academic Press, London, pp. 15–70.Google Scholar
  16. 16.
    Palomares, L. A., Estrada-Mondaca, S., and Ramírez, O. T. (2004) Principles and applications of the insect-cell-baculovirus expression vector system, in Cell Culture Technology for Pharmaceutical and Cellular Applications (Ozturk, S. and Hu, W. S., eds.), Marcel Dekker, New York, NY, in press.Google Scholar
  17. 17.
    Cohen, D. M. and Ramig, R. F. (1999) Viral genetics, in Fields Virology (Fields, B. N., Knipe, D. M., Howley, P. M., et al., eds.), Lippincott-Raven, Philadelphia, PA, pp. 113–151.Google Scholar
  18. 18.
    Dee, K. U., and Shuler, M. L. (1997) A mathematical model of the trafficking of acid-dependent enveloped viruses: application to binding, nuclear accumulation and uptake of baculovirus. Biotechnol. Bioeng. 54, 468–490.PubMedGoogle Scholar
  19. 19.
    Petricevich, V. L., Palomares, L. A., González, M., and Ramírez, O. T. (2001) Parameters that determine virus adsorption kinetics: toward the design of better infection strategies for the insect-cell baculovirus expression system. Enzyme Microb. Technol. 28, 52–61.Google Scholar
  20. 20.
    Ailor, E. and Betenbaugh, M. J. (1999) Modifying secretion and posttranslational processing in insect cells. Curr. Op. Biotechnol. 10, 142–145.Google Scholar
  21. 21.
    Kopito, R. R. (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530.PubMedGoogle Scholar
  22. 22.
    Schlieker, C., Bukau, B., and Mogk, A. (2002) Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J. Biotechnol. 9, 13–21.Google Scholar
  23. 23.
    Chapman, R., Sidrauski, C., and Walter, P. (1998) Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell. Dev. Biol. 14, 459–485.PubMedGoogle Scholar
  24. 24.
    Carrió, M. M. and Villaverde, A. (2002) Construction and deconstruction of bacterial inclusion bodies. J. Biotechnol. 96, 3–12.PubMedGoogle Scholar
  25. 25.
    De Bernadez Clark, E. (2001) Protein refolding for industrial processes. Curr. Op. Biotechnol. 12, 202–207.Google Scholar
  26. 26.
    Datar, R. V., Cartwright, T., and Rosen, C. G. (1993) Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator. Bio/Technol. 11, 349–357.Google Scholar
  27. 27.
    Bach, H., Mazor, Y., Shaky, S., Berdichevsky, A. S. Y., Gutnick, D. L., and Benhar, I. (2001) Escherichia coli maltose binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single chain antibodies. J. Mol. Biol. 312, 79–93.PubMedGoogle Scholar
  28. 28.
    Paetzel, M., Karla, A., Strynadka, N. C. J., and Dalbey, R. E. (2002) Signal peptidases. Chem. Rev. 102, 4549–4579.PubMedGoogle Scholar
  29. 29.
    Ailor, E., Pathmanathan, J., Jongbloed, J. D. H., and Betenbaugh, M. J. (1999) A bacterial signal peptidase enhances processing of a recombinant single chain antibody fragment in insect cells. Biochem. Biophys. Res. Comm. 255, 444–450.PubMedGoogle Scholar
  30. 30.
    van Dijl, J. M., de Jong, A., Smith, H., Bron, S., and Venema, G. (1991) Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli. Mol. Gen. Genet. 227, 40–48.PubMedGoogle Scholar
  31. 31.
    Bryan, P. N. (2002) Prodomains and protein folding catalysis. Chem. Rev. 102, 4085–4815.Google Scholar
  32. 32.
    Nakayama, K. (1997) Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem. J. 327, 25–35.Google Scholar
  33. 33.
    Laprise, M. H., Grondin, F., and Dubois, C. M. (1998) Enhanced TGFβ1-maturation in High Five cells coinfected with recombinant baculovirus encoding the convertase furin/pace: improved technology for the production of recombinant proproteins in insect cells. Biotechnol. Bioeng. 58, 85–91.PubMedGoogle Scholar
  34. 34.
    Drews, R., Paleyanda, R. K., Lee, T. K., Chang, R. R., Rehemtulla, A., Kaufman, R. J., et al. (1995) Proteolytic maturation of protein C upon engineering the mouse mammary gland to express furin. Proc. Natl. Acad. Sci. USA 92, 10462–10466.PubMedGoogle Scholar
  35. 35.
    Wingfield, P. T. (1997) Purification of recombinant proteins, in Current Protocols in Protein Science (Coligan, E., Dunn, B. M., Ploegh, H. L., Speicher, D. W., and Wigfield, P. T., eds.), John Wiley and Sons, New York, NY, pp. 6.0.1–6.1.22.Google Scholar
  36. 36.
    Hwang, D. D. H., Liu, L. F., Kuan, I. C., Lin, L. Y., Tam, T. C. S., and Tam, M. F. (1999) Coexpression of glutathione S-transferase with methionine aminopeptidase: a system of producing enriched N-terminal processed proteins in Escherichia coli. Biochem. J. 338, 335–342.PubMedGoogle Scholar
  37. 37.
    Vassileva-Atanassova, A., Mironova, R., Nacheva, G., and Ivanov, I. (1999) N-terminal methionine of recombinant proteins expressed in two different Escherichia coli strains. J. Biotechnol. 69, 63–67.PubMedGoogle Scholar
  38. 38.
    Benz, I. and Schmidt, M. A. (2002) Never say never again: protein glycosylation in pathogenic bacteria. Mol. Microbiol. 45, 267–276.PubMedGoogle Scholar
  39. 39.
    Furmanek, A. and Hofsteenge, J. (2000) Protein C-mannosylation: facts and questions. Acta Biochimica Polonica 47, 781–789.PubMedGoogle Scholar
  40. 40.
    Lisowska, E. (2002) The role of glycosylation in protein antigenic properties. Cell. Mol. Life Sci. 59, 445–455.PubMedGoogle Scholar
  41. 41.
    Gu, X., Harmon, B. J., and Wang, D. I. C. (1998) Monitoring and characterization of glycoprotein quality in animal cell cultures, in Advances in Bioprocess Engineering II (Galindo, E. and Ramírez, O. T., eds.), Kluwer Academic Publishers. Dordrecht, The Netherlands, pp. 1–24.Google Scholar
  42. 42.
    Shelikoff, M., Sinskey, A. J., and Stephanopoulos, G. (1994) The effect of protein synthesis inhibitors on the glycosylation site occupancy of recombinant human prolactin. Cytotechnol. 15, 195–208.Google Scholar
  43. 43.
    Ohkura, T., Fukushima, K., Kurisaki, A., Sagami, H., Ogura, K., Ohno, K., et al. (1997) A partial deficiency of dehydrodolichol reduction is a cause of carbohydrate-deficient glycoprotein syndrome type I. J. Biol. Chem. 272, 6868–6875.PubMedGoogle Scholar
  44. 44.
    Fukushima, K., Ohkura, T., and Yamashita, K. (1997) Synthesis of lipid-linked oligosaccharides is dependent on the cell cycle in rat 3Y1-cells. J. Biochem. (Tokyo) 121, 415–418.Google Scholar
  45. 45.
    Andersen, D. C., Bridges, T., Gawlitzek, M., and Hoy, C. (2000) Multiple cell culture factors can affect the glycosylation of Asn184-in CHO-produced tissue-type plasminogen activator. Biotechnol. Bioeng. 70, 25–31.PubMedGoogle Scholar
  46. 46.
    Yuk, I. H. Y. and Wang, D. I. C. (2002) Glycosylation of Chinese hamster ovary cells in dolichol phosphate-supplemented cultures. Biotechnol. Appl. Biochem. 36, 141–147.PubMedGoogle Scholar
  47. 47.
    Rearick, J. I., Chapman, A., and Kornfeld, S. (1981) Glucose starvation alters lipid-linked oligosaccharide biosynthess in Chinese hamster ovary cells. J. Biol. Chem. 256, 6255–6261.PubMedGoogle Scholar
  48. 48.
    Nyberg, G. B., Balcarcel, R., Follstad, B. D., Stephanopoulos, G., and Wang, D. I. C. (1999) Metabolic effects on recombinant interferon-γ glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol. Bioeng. 62, 336–347.PubMedGoogle Scholar
  49. 49.
    Gu, X. and Wang, D. I. C. (1998) Improvement of interferon-γ sialylation in Chinese hamster ovary cell culture by feeding of N-acetyl-mannosamine. Biotechnol. Bioeng. 58, 642–648.PubMedGoogle Scholar
  50. 50.
    Lawrence, S. M., Huddleston, K. A., Pitts, L. R., Nguyen, N., Lee, Y. C., Vann, W. F., et al. (2000) Cloning and expression of the human N-acetyl-neuraminic acid phosphate synthase gene with 2-keto3-deoxy-D-glycero-D-galactonononic acid biosynthetic ability. J. Biol. Chem. 275, 17869–17877.PubMedGoogle Scholar
  51. 51.
    Hills, A. E., Patel, A., Boyd, P., and James, D. C. (2001) Metabolic control of recombinant monoclonal antibody N-glycosylation in GSNS0-cells. Biotechnol. Bioeng. 75, 239–251.PubMedGoogle Scholar
  52. 52.
    Palomares, L. A. and Ramírez, O. T. (2002) Complex N-glycosylation of recombinant proteins by insect cells. Bioprocessing. 1, 70–73.Google Scholar
  53. 53.
    Gramer, M. J. and Goochee, C. F. (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol. Prog. 9, 366–373.PubMedGoogle Scholar
  54. 54.
    Munzert, E., Heidermann, R., Büntemeyer, H., Lehmann, J., and Múthing, J. (1997) Production of recombinant human antithrombin III on 20L bioreactor scale: correlation of supernatant neuraminidase activity, desialylation, and decrease of biological activity of recombinant glycoprotein. Biotechnol. Bioeng. 56, 441–448.PubMedGoogle Scholar
  55. 55.
    Yang, M. and Butler, M. (2000) Effects of ammonia on the glycosylation of human recombinant erythropoietin in culture. Biotechnol. Prog. 16, 751–759.PubMedGoogle Scholar
  56. 56.
    Schmelzer, A. E. and Miller, W. M. (2002) Effects of osmoprotectant compounds on NCAM-polysialylation under hyperosmotic stress and elevated pCO2. Biotechnol. Bioeng. 77, 359–368.PubMedGoogle Scholar
  57. 57.
    Kaufmann, H., Mazur, X., Marone, R., Bailey, J. E., and Fussenegger, M. (2001) Comparative analysis of two controlled proliferation strategies regarding product quality, influence on tetracyclineregulated gene expression, and productivity. Biotechnol. Bioeng. 72, 592–602.PubMedGoogle Scholar
  58. 58.
    Lopez, M., Tetaert, D., Juliant, S., Gazon, M., Cerruti, M., Verbert, A., et al. (1999) Oglycosylation potential of lepidopteran insect cell lines. Biochim. Biophys. Acta 1427, 49–61.PubMedGoogle Scholar
  59. 59.
    Grabherr, R., Ernst, W., Oker-Blom, C., and Jones, I. (2001) Developments in the use of baculovirus display of complex eukaryotic proteins. Trends Biotechnol. 19, 231–236.PubMedGoogle Scholar
  60. 60.
    Palomares, L. A., Kuri-Breña, F., and Ramírez, O. T. (2002) Industrial recombinant protein production, in The Encyclopedia of Life Support Systems. EOLSS Publishers, Oxford., Scholar
  61. 61.
    Palomares, L. A. and Ramírez, O. T. (2000) Bioreactor scaleup, in The Encyclopedia of Cell Technology (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 174–183.Google Scholar
  62. 62.
    Ozturk, S. S. (1996) Engineering challenges in high density cell culture systems. Cytotechnol. 22, 3–16.Google Scholar
  63. 63.
    Vasina, J. A., Peterson, M. S., and Baneyx, F. (1998) Scale-up and optimization of the low-temperature inducible cspA promoter system. Biotechnol. Prog. 14, 714–721.PubMedGoogle Scholar
  64. 64.
    Ramírez, O. T., Zamora, R., Espinosa, G., Merino, E., Bolívar, F., and Quintero, R. (1994) Kinetic study of penicillin acylase production by recombinant E. coli in batch cultures. Process Biochem. 29, 197–206.Google Scholar
  65. 65.
    Eriksen, N. T., Kratchmarova, I., Neve, S., Kristiansen, K., and Iversen, J. J. L. (2001) Automatic inducer addition and harvesting of recombinant Escherichia coli cultures based on indirect on-line estimation of biomass concentration and specific growth rate. Biotechnol. Bioeng. 75, 355–361.PubMedGoogle Scholar
  66. 66.
    Yazdani, S. S. and Mukherjee, K. J. (1998) Overexpression of streptokinase using a fed-batch strategy. Biotechnol. Lett. 20, 923–927.Google Scholar
  67. 67.
    Elias, C. B., Zeisea, A., Bédard, C., and Kamen, A. A. (2000) Enhanced growth of Sf9-cells to a maximum cell density of 5.2 × 107 cells per mL and production of b-galactosidase at high cell density by fed-batch culture. Biotechnol. Bioeng. 68, 381–388.PubMedGoogle Scholar
  68. 68.
    Schein, C. H. (1999) Protein expression, soluble, in Encyclopedia of Bioprocess Technology. Fermentation, Biocatalysis and Bioseparation (Flickinger, M. C. and Drew, S. W., eds.), John Wiley and Sons, New York, NY, pp. 2156–2169.Google Scholar
  69. 69.
    Gupta, J. C., Jisani, M., Pandey, G., and Mukherjee, K. J. (1999) Enhancing recombinant protein yields in Escherichia coli using the T7-system under the control of heat inducible γPL promoter. J. Biotechnol. 68, 125–134.PubMedGoogle Scholar
  70. 70.
    Farewell, A. and Neidhardt, F. C. (1998) Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol. 180, 4704–4710.PubMedGoogle Scholar
  71. 71.
    Martínez, A., Ramírez, O. T., and Valle, F. (1998) Effect of growth rate on the production of β-galactosidase from Escherichia coli in Bacillus subtilis using glucose-limited exponentially fed-batch cultures. Enzyme Microb. Technol. 22, 520–526.Google Scholar
  72. 72.
    Sandén, A. M., Pytz, I., Tubelakas, I., Föberg, C., Le, H., Hektor, A., et al. (2003) Limiting factors in Escherichia coli fed-batch production of recombinant proteins. Biotechnol. Bioeng. 81, 158–166.PubMedGoogle Scholar
  73. 73.
    Saraswat, V., Kim, D. Y., Lee, J., and Park, Y. H. (1999) Effect of specific production rate on multimerization of plasmid vector and gene expression level. FEMS Microbiol. Lett. 179, 367–373.PubMedGoogle Scholar
  74. 74.
    Ramírez, O.T., Zamora, R., Quintero, R., and López-Munguía, A. (1994) Exponentially fed-batch cultures as an alternative to chemostats: the case of penicillin acylase production by recombinant E. coli. Enzyme Microb. Technol. 16, 895–903.PubMedGoogle Scholar
  75. 75.
    Yazdani, S. S. and Mukherjee, K. J. (2002) Continuous-culture studies on the stability and expression of recombinant streptokinase in Escherichia coli. Bioprocess Biosyst. Eng. 24, 341–346.Google Scholar
  76. 76.
    Åkesson, M., Karlsson, E. N., Hagander, P., Axelsson, J. P., and Tocaj, A. (1999) Online detection of acetate formation in Escherichia coli cultures using dissolved oxygen responses to feed transients. Biotechnol. Bioeng. 69, 590–598.Google Scholar
  77. 77.
    Suzuki, H., Kishimoto, M., Kamoshita, Y., Omasa, T., Katakura, Y., and Suga, K. (2000) Online control of feeding of medium components to attain high cell density. Bioproc. Eng. 22, 433–440.Google Scholar
  78. 78.
    Bailey, J. E. (1993) Host-vector interactions in Escherichia coli, in Advances in Biochemical Engineering and Biotechnology (Fietcher, A., ed.), Springer Verlag. Berlin, 48, pp. 29–52.Google Scholar
  79. 79.
    Leelavatcharamas, V., Emery, A. N., and Al-Rubeai, M. (1999) Use of cell cycle analysis to characterize growth and interferon production in perfusion culture of CHO cells. Cytotechnol. 30, 59–69.Google Scholar
  80. 80.
    Lidén, G. (2002) Understanding the bioreactor. Bioproc. Biosyst. Eng. 24, 273–279.Google Scholar
  81. 81.
    Shuler, M. L. and Kargi, F. (2002) Bioprocess engineering. Basic concepts. 2nd ed. Prentice Hall, Upper Saddle River, NJ, USA.Google Scholar
  82. 82.
    O’Beirne, D. and Hamer, G. (2000) Oxygen availability and the growth of Escherichia coli W-3110: a problem exacerbated by scaleup. Biprocess Eng. 23, 375–380.Google Scholar
  83. 83.
    Palomares, L. A. and Ramírez O. T. (1996). The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnol. 22, 225–237.Google Scholar
  84. 84.
    Yegneswaran, P. K., Thompson, B. G., and Gray, M. R. (1991) Effect of dissolved oxygen control on growth and antibiotic production by Strepmomyces clavuligerus fermentations. Biotechnol. Prog. 7, 246–250.PubMedGoogle Scholar
  85. 85.
    Konz, J. O., King, J., and Cooney, C. L. (1998) Effects of oxygen on recombinant protein expression. Biotechnol. Prog. 14, 393–409.PubMedGoogle Scholar
  86. 86.
    Li, X., Robbins, J. W., and Taylor, K. B. (1992) Effect of the levels of dissolved oxygen on the expression of recombinant proteins in four recombinant Escherichia coli strains. J. Ind. Microbiol. 9, 1–10.PubMedGoogle Scholar
  87. 87.
    De León, A., Galindo, E., and Ramírez, O. T. A post-fermentative stage improves penicillin acylase production by a recombinant E. coli. Biotechnol. Lett. 18, 927–932.Google Scholar
  88. 88.
    Bollinger, C. J. T., Bailey, J. E., and Kallio, P. T. (2001) Novel hemoglobins to enhance micro-aerobic growth and substrate utilization in Escherichia coli. Biotechnol. Prog. 17, 798–808.PubMedGoogle Scholar
  89. 89.
    Doig, S. D., O’Sullivan, L. M., Patel, S., Ward, J. M., and Woodley, J. M. (2001) Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10-pQR239. Enzyme Microb. Technol. 28, 265–274.PubMedGoogle Scholar
  90. 90.
    Thomas, C. R. and Zhang, Z. (1998) The effect of hydrodynamics on biological materials. In Advances in Bioprocess Engineering II (Galindo, E. and Ramírez, O. T., eds.) Kluwer Academic Publishers, Dordrecht, pp. 137–170.Google Scholar
  91. 91.
    Garcia-Briones, M. A., Brodkey, R. S., and Chalmers, J. J. (1994) Computer simulation of the rupture of a gas bubble at a gas-liquid interface and its implications in animal cell damage. Chem. Eng. Sci. 49, 2301–2320.Google Scholar
  92. 92.
    Chisti, Y. (2000) Animal cell damage in sparged reactors. Trends Biotechnol. 18, 420–423.PubMedGoogle Scholar
  93. 93.
    Ramírez, O. T. and Mutharasan, R. (1990) The role of plasma membrane fluidity on the shear sensitivity of hybridomas grown under hydrodynamic stress. Biotechnol. Bioeng. 36, 911–920.PubMedGoogle Scholar
  94. 94.
    Palomares, L. A., González, M., and Ramírez, O. T. (2000) Evidence of Pluronic F68-direct interaction with insect cells: impact on shear protection, recombinant protein and baculovirus production. Enzyme Microb. Technol. 26, 324–331.PubMedGoogle Scholar
  95. 95.
    Wu, J., Ruan, Q., and Lam, H. Y. P. (1997) Effects of surface-active medium additives on insect cell surface hydrophobicity relating to cell protection against bubble damage. Enzyme Microb. Technol. 21, 341–348.Google Scholar
  96. 96.
    Galindo, E., Flores, C., Larralde-Corona, P., Corkidi-Blanco, G., Rocha-Valadez, J. A., and Serrano-Carreón, L. (2004) Production of 6-pentyl-a-pyrone by Trichoderma harzianum cultured in unbaffied and baffied shake flasks. Biochem. Eng. J. In press.Google Scholar
  97. 97.
    Ferreira, B. S., Calado, C. R. C., van Keulen, F., Fonseca. L. P., Cabral, J. M. S., and da Fonseca, M. M. R. (2003) Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: strain physiological aspects. Appl. Microbiol. Biotechnol. 61, 69–76.PubMedGoogle Scholar
  98. 98.
    Bryers, J. D. and Huang, C. T. (1995) Recombinant plasmid retention and expression in bacterial biofilm cultures. Water Sci. Technol. 31, 105–115.Google Scholar
  99. 99.
    Laken, H. A. and Leonard, M. W. (2001) Understanding and modulating apoptosis in industrial cell culture. Curr. Op. Biotechnol. 12, 175–179.Google Scholar
  100. 100.
    Demain, A. (2000) Small bugs, big business: The economic power of a microbe. Biotechnol. Adv. 18, 499–514.PubMedGoogle Scholar
  101. 101.
    Andersen, D. C. and Krummen, L. (2002) Recombinant protein expression for therapeutic applications. Curr. Op. Biotechnol. 13, 117–123.Google Scholar
  102. 102.
    Hannig, G. and Makrides, S. (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol. 16, 54–60.PubMedGoogle Scholar
  103. 103.
    Jonasson, P., Liljeqvist, S., Nygren, P. Å., and Støahl, S. (2002) Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol. Appl. Biochem. 35, 91–105.PubMedGoogle Scholar
  104. 104.
    Doekel, S., Eppelmann, K., and Marahiel, M. A. (2002) Heterologous expression of non-ribosomal peptide synthetases in B. subtilis: construction of a bifunctional B. subtilis/E. coli shuttle vector system. FEMS Microbiol. Letters. 216, 185–191.Google Scholar
  105. 105.
    Makrides, S. C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60, 512–538.PubMedGoogle Scholar
  106. 106.
    Jensen, P. R. and Hammer, K. (1998) Artificial promoters for metabolic optimization. Biotechnol. Bioeng. 58, 191–195.PubMedGoogle Scholar
  107. 107.
    Solem, C. and Jensen, P. R. (2002) Modulation of gene expression made easy. Appl. Environ. Microbiol. 68, 2397–2403.PubMedGoogle Scholar
  108. 108.
    Jensen, P. R. and Hammer, K. (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64, 82–87.PubMedGoogle Scholar
  109. 109.
    Smolke, C. D. and Keasling, J. D. (2002) Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol. Bioeng. 80, 762–776.PubMedGoogle Scholar
  110. 110.
    Tolmasky, M. E., Actis, L. A., and Crosa, J. H. (1999) Plasmid DNA replication, in Encyclopedia of Bioprocess Techology (Flickinger, M. C. and Drew, S. W., eds), John Wiley and Sons Inc., New York, NY, pp. 2004–2019.Google Scholar
  111. 111.
    Grabherr, R. and Bayer, K. (2002) Impact of targeted vector design on ColE1-plasmid replication. Trends Biotechnol. 20, 257–260.PubMedGoogle Scholar
  112. 112.
    Grabherr, R., Nilsson, E., Striedner, G., and Bayer, K. (2002) Stabilizing plasmid copy number to improve recombinant protein production. Biotechnol. Bioeng. 77, 142–147.PubMedGoogle Scholar
  113. 113.
    Sati, S. P., Singh, S. K., Kumar, N., and Sharma, A. (2002) Extra terminal residues have a profound effect on the folding and solubility of a Plasmodium falciparium sexual stage-specific protein overexpressed in Escherichia coli. Eur. J. Biochem. 269, 5259–5263.PubMedGoogle Scholar
  114. 114.
    Davis, G. D., Elisee, C., Newman, D. M., and Harrison, R. G. (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol. Bioeng. 65, 382–388.PubMedGoogle Scholar
  115. 115.
    Collet, J. F. and Bardwell, J. C. A. (2002) Oxidative protein folding in bacteria. Mol. Microbiol. 44, 1–8.PubMedGoogle Scholar
  116. 116.
    Chen, J., Song, Jl., Zhang, S., Wang, Y., Cui, D. F., and Wang, C. C. (1999) Chaperone activity of DsbC. J. Biol. Chem. 274, 19601–19605.PubMedGoogle Scholar
  117. 117.
    Shao, F., Bader, M. W., Jakob, U., and Bardwell, J. C. A. (2000) DsbG, a protein disulfide isomerase with chaperone activity. J. Biol. Chem. 275, 13349–13352.PubMedGoogle Scholar
  118. 118.
    Maskos, K., Huber-Wunderlich, M., and Glockshuber, R. (2003) DsbA-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo. J. Mol. Biol. 325, 495–513.PubMedGoogle Scholar
  119. 119.
    Harwood, C. R. (1992) Bacillus subtilis and its relatives: Molecular biological and industrial workhorses. Trends Biotechnol. 10, 247–256.Google Scholar
  120. 120.
    Sánchez, M., Prim, N., Rández-Gil, F., Pastor, F. I. J., and Diaz, P. (2002) Engineering of baker’s yeast, E. coli and Bacillus hosts for the production of Bacillus subtilis lipase A. Biotechnol. Bioeng. 78, 339–345.PubMedGoogle Scholar
  121. 121.
    Huang, H., Ridgway, D., Gu, T., and Moo-Young, M. (2003) A segregated model for heterologous amylase production by Bacillus subtilis. Enzyme Microb. Technol. 32, 407–413.Google Scholar
  122. 122.
    El-Helow, E. R., Abdel-Fattah, Y. R., Ghanem, K. M., and Mohamad, E. A. (2000) Application of the response surface methodology for optimizing the activity of an aprE-driven gene expression system in Bacillus subtilis. Appl. Microbiol. Biotechnol. 54, 515–520.PubMedGoogle Scholar
  123. 123.
    Oh, M. K., Kim, B. G., and Park, S. H. (1995) Importance of spore mutants for fed-batch and continuous fermentation of Bacillus subtilis. Biotechnol. Bioeng. 47, 696–702.PubMedGoogle Scholar
  124. 124.
    Dequin, S. (2001) The potential of genetic engineering for improving brewing, wine making and baking yeasts. Appl. Microbiol. Biotechnol. 5, 577–588.Google Scholar
  125. 125.
    Kjeldsen, T. (2000) Yeast secretory expression of insulin precursors. Appl. Microbiol. Biotechnol. 54, 277–286.PubMedGoogle Scholar
  126. 126.
    Gellisen, G. (2000) Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54, 741–750.Google Scholar
  127. 127.
    Lin Cereghino, G. P., Lin Cereghino, J., Ilgen, C., and Cregg, J. M. (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Op. Biotechnol. 13, 329–332.Google Scholar
  128. 128.
    Ko, J. H., Hahm, M. S., Kang, H. A., Nam, S. W., and Chung, B. H. (2002) Secretory expression and purification of Aspergillus niger glucose oxidase in Saccharomyces cerevisiae mutant deficient in PMR1 gene. Prot. Expr. Purif. 25, 488–493.Google Scholar
  129. 129.
    Chiba, Y., Suzuki, M., Yoshida, S., Yoshida, A., Ikenaga, H., Takeuchi, M., Jigami, Y., and Ichishima, E. (1998) Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J. Biol. Chem. 273, 26298–26304.PubMedGoogle Scholar
  130. 130.
    Tan, N. S., Ho, B., and Ding, J. L. (2002) Engineering a novel secretion signal for cross-host recombinant protein expression. Prot. Eng. 15, 337–345.Google Scholar
  131. 131.
    Lin Cereghino, J. and Cregg, J. M. (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24, 45–66.Google Scholar
  132. 132.
    Callewaert, N., Laroy, W., Cadirgi, H., Geysens, S., Saelens, X., Jou, W. M., et al. (2001) Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-a-D-mannosidase for N-glycan engineering in Pichia pastoris. FEBS Letters. 503, 173–178.PubMedGoogle Scholar
  133. 133.
    Houard, S., Heinderyckx, M., and Bollen, A. (2002) Engineering of non-conventional yeasts for efficient synthesis of macromolecules: the methylotrophic genera. Biochimie 84, 1089–1093.PubMedGoogle Scholar
  134. 134.
    Punt, P. J., Van Biezen, N., Conesa, A., Albers, A., Mangnus, J., and van den Hondel, C. (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 20, 200–206.PubMedGoogle Scholar
  135. 135.
    Gouka, R. J., Ount, P. J., and van den Hondel, C. A. M. J. J. (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl. Microbiol. Biotechnol. 47, 1–11.PubMedGoogle Scholar
  136. 136.
    Gyamerah, M., Merichetti, G., Adedato, O., Scharer, J. M., and Moo-Young, M. (2002) Bioprocessing strategies for improving hen egg-white lysozyme (HEWL) production by recombinant Aspergillus niger HEWLWT1316. Appl. Microbiol. Biotechnol. 60, 403–407.PubMedGoogle Scholar
  137. 137.
    Maras, M., Saelens, X., Laroy, W., Piens, K., Claetssens, M., Fiers, W., et al. (1997) In vitro conversion of the carbohydrate moiety of fungal glycoproteins to mammaliantype oligosaccharides. Evidence for N-acetylglucosamyniltransferase-I-accepting glycans from Trichoderma reesei. Eur. J. Biochem. 249, 701–707.PubMedGoogle Scholar
  138. 138.
    Maras, M., De Bruyn, A., Vervecken, W., Uusitalo, J., Penttilä, M., Busson, R., et al. (1999) In vivo synthesis of complex N-glycans by expression of human N-acetylglucosamyniltransferase I in the filamentous fungus Trichoderma reesei. FEBS Letters. 452, 365–370.PubMedGoogle Scholar
  139. 139.
    Ramírez, O. T., Sureshkumar, G. K., and Mutharasan, R. (1990) Bovine colostrum or milk as a serum substitute for the cultivation of a mouse hybridoma. Biotechnol. Bioeng. 35, 882–889.PubMedGoogle Scholar
  140. 140.
    Colosimo, A., Goncz, K. K., Holmes, A. R., Kunzelmann, K., Novelli, G., Malone, R. W., et al. (2000) Transfer and expression of foreign genes in mammalian cells. BioTechniques. 29, 314–331.PubMedGoogle Scholar
  141. 141.
    Gao, R., McCormick, C. J., Arthur, M. J. P., Rudell, R., Oakley, F., Smart, D. E., et al. (2002) High efficiency gene transfer into cultured primary rat and human hepatic stellate cells using baculovirus vectors. Liver. 22, 15–22.PubMedGoogle Scholar
  142. 142.
    Underhill, M. F., Coley, C., Birch, J. R., Findlay, A., Kallmeier, R., Proud, C. G., et al. (2003) Engineering mRNA translation initiation to enhance transient gene expression in Chinese hamster ovary cells. Biotechnol. Prog. 19, 121–129.PubMedGoogle Scholar
  143. 143.
    Fussenegger, M. and Bailey, J. E. (1998) Molecular regulation of cell cycle progression and apoptosis in mammalian cells: implications for biotechnology. Biotechnol. Prog. 14, 807–833.PubMedGoogle Scholar
  144. 144.
    Watanabe, S., Shuttleworth, J., and Al-Rubeai, M. (2002) Regulation of cell cycle and productivity in NS0-cells by the overexpression of p21CIP1. Biotechnol. Bioeng. 77, 1–7.PubMedGoogle Scholar
  145. 145.
    Meents, H., Enenkel, B., Werner, R. G., and Fussenegger, M. (2002) p27Kip1 mediated controlledproliferation technology increases constitutive sICAM production in CHODUKX adapted for growth in suspension and serumfree media. Biotechnol. Bioeng. 79, 619–627.PubMedGoogle Scholar
  146. 146.
    Meneses-Acosta, A., Mendonça, R. Z., Merchant, H., Covarrubias, L., and Ramírez, O. T. (2001) Comparative characterization of cell death between Sf9-insect cells and hybridoma cultures. Biotechnol. Bioeng. 72, 441–457.PubMedGoogle Scholar
  147. 147.
    Fussenegger, M., Bailey, J. E., Hauser, H., and Mueller, P. P. (1999) Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends Biotechnol. 17, 35–42.PubMedGoogle Scholar
  148. 148.
    Fussenegger, M., and Betenbaugh, M. J. (2002) Metabolic engineering II. Eukaryotic systems. Biotechnol. Bioeng. 79, 509–531.PubMedGoogle Scholar
  149. 149.
    Tey, B. T., Singh, R. P., Piredda, L., Piacentini, M., and Al-Rubeai, M. (2000) Influence of Ccl2-on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol. Bioeng. 68, 31–43.PubMedGoogle Scholar
  150. 150.
    Isahque, A. and Al-Rubeai, M. (2002) Role of vitamins in determining apoptosis and extent of suppression by bcl2-during hybridoma cell culture. Apoptosis 7, 231–239.Google Scholar
  151. 151.
    Davis, B. G. (2002) Synthesis of glycoproteins. Chem. Rev. 102, 579–601.PubMedGoogle Scholar
  152. 152.
    Prati, E. G. P., Matasci, M., Suter, T. B., Dinter, A., Sburlati, A. R., and Bailey, J. E. (2000) Engineering of coordinated up and down-regulation of two glycosyltransferases of the Oglycosylation pathway in Chinese hamster ovary (CHO) cells. Biotechnol. Bioeng. 68, 239–244.PubMedGoogle Scholar
  153. 153.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschi, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411, 494–498.PubMedGoogle Scholar
  154. 154.
    Fire, A. (1999) RNA-triggered gene silencing. Trends in Genetics 15, 358–363.PubMedGoogle Scholar
  155. 155.
    Yu, J. Y., DeRuiter, S. L., and Turner, D. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047–6052.PubMedGoogle Scholar
  156. 156.
    Hamada, M., Ohtsuka, T., Kawaida, R., Koizumi, M., Morita, K., Furukawa, et al. (2002) Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′ ends of siRNAs. Anti-sense Nucleic Acid Drug Dev. 12, 301–309.Google Scholar
  157. 157.
    Davis, R., Schooley, K., Rasmussen, B., Thomas, J., and Reddy, P. (2000) Effect of PDI overexpression on recombinant protein secretion in CHO cells. Biotechnol. Prog. 16, 736–743.PubMedGoogle Scholar
  158. 158.
    Bao, W. G. and Fukuhara, H. (2001) Secretion of human proteins from yeast: simulation by duplication of polyubiquitin and protein disulfide isomerase genes in Kluyveromyces lactis. Gene 272, 103–110.PubMedGoogle Scholar
  159. 159.
    Li, Q., Peterson, K. R., Fang, X., and Stamatoyannopoulos, G. (2002) Locus control regions. Blood 100, 3077–3086.PubMedGoogle Scholar
  160. 160.
    Van Craenenbroeck, K., Vanhoenacker, P., and Haegeman, G. (2000) Episomal vectors for gene expression in mammalian cells. Eur. J. Biochem. 267, 5665–5678.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Laura A. Palomares
    • 1
  • Sandino Estrada-Moncada
    • 1
  • Octavio T. Ramírez
    • 1
  1. 1.Instituto de BiotecnologíaUNAMCuernavacaMéxico

Personalised recommendations