Microflora of the Gastrointestinal Tract

A Review
  • Wei-Long Hao
  • Yuan-Kun Lee
Part of the Methods in Molecular Biology book series (MIMB, volume 268)


The mucosal surface of the human gastrointestinal (GI) tract is about 200–300 m2 and is colonized by 1013–14 bacteria of 400 different species and subspecies. Savage (1) has defined and categorized the gastrointestinal microflora into two types, autochthonous flora (indigenous flora) and allochthonous flora (transient flora). Autochthonous microorganisms colonize particular habitats, i.e., physical spaces in the GI tract, whereas allochthonous microorganisms cannot colonize particular habitats except under abnormal conditions. Most pathogens are allochthonous microorganisms; nevertheless, some pathogens can be autochthonous to the ecosystem and normally live in harmony with the host, except when the system is disturbed (2).


Sialic Acid Bacterial Adhesion Intestinal Mucus Mucus Glycoprotein Indigenous Microflora 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Savage, D. C. (1977) Interactions between the host and its microbes. In: Microbial Ecology of the Gut (Clark, R. T. J. and Bauchop, T., eds.). Academic, San Diego, pp. 277–310.Google Scholar
  2. 2.
    Trenschel, R., Peceny, R., Runde, V., et al. (2000) Fungal colonization and invasive fungal infections following allogeneic BMT using metronidazole, ciprofloxacin and fluconazole or ciprofloxacin and fluconazole as intestinal decontamination. Bone Marrow Transplant 26, 993–997.PubMedCrossRefGoogle Scholar
  3. 3.
    Tannock, G. W. (1983) Effect of dietary and environmental stress on the gastrointestinal microbiota. In: Human Intestinal Microflora in Health and Disease (Hentges, D. J., ed.). Academic, London, p. 517.Google Scholar
  4. 4.
    Brassart, D. and Schiffrin, E. J. (1997) The use of probiotics to reinforce mucosal defence mechanisms. Trends Food Sci. Technol. 8, 321–326.CrossRefGoogle Scholar
  5. 5.
    Gorbach, S. L. and Goldin, B. R. (1990) The intestinal microflora and the colon cancer connection. Rev. Infect. Dis. 12(suppl 2), S252–S261.PubMedGoogle Scholar
  6. 6.
    Ofek, I. and Doyle, R. J. (1994) Principles of bacterial adhesion. In: Bacterial Adhesion to Cells and Tissues (Ofek, I. and Doyle, R. J., eds.). Chapman & Hall, New York, pp. 1–16.Google Scholar
  7. 7.
    Mouricout, M., Petit, J. M., Carias, J. R., and Julien, R. (1990) Glycoprotein glycans that inhibit adhesion of Escherichia coli mediated by K99 fimbriae: treatment of experimental colibacillosis. Infect. Immun. 58, 98–106.PubMedGoogle Scholar
  8. 8.
    Lee, Y. K. and Puong, K. Y. (2002) Competition for adhesion between probiotics and human gastrointestinal pathogens in the presence of carbohydrate. Br. J. Nutr. 88, S1–S8.CrossRefGoogle Scholar
  9. 9.
    Sharon, N. and Lis, H. (1981) Glycoproteins: research booming on long-ignored, ubiquitous compounds. Chem. Engr. News 59, 21–24.CrossRefGoogle Scholar
  10. 10.
    Hynes, R. O. and Yamada, K. M. (1982) Fibronectins: multifunctional molecular glycoproteins. J. Cell Biol. 95, 369–377.PubMedCrossRefGoogle Scholar
  11. 11.
    Klemm, P. (1985) Fimbrial adhesion of Escherichia coli. Rev. Infect. Dis. 7,321–340.PubMedCrossRefGoogle Scholar
  12. 12.
    Hulgren, S. J., Abraham, S., Caparon, M., Falk, P., St. Geme, J. W., and Normark, S. (1993) Pilus and nonpilus bacterial adhesion: assembly and function in cell recognition. Cell 73, 887–901.CrossRefGoogle Scholar
  13. 13.
    McGroarty, J. P. (1994) Cell surface appendages of lactobacilli. FEMS Microbiol. Lett. 124, 405–410.PubMedCrossRefGoogle Scholar
  14. 14.
    Yamamoto, K., Miwa, T., Taniguchi, H., et al. (1996) Binding specificity of Lactobacillus to glycolipids. Biochem. Biophys. Res. Commun. 228, 148–152.PubMedCrossRefGoogle Scholar
  15. 15.
    Neeser, J. R., Granato, D., Rouvet, M., Servin, A., Teneberg, S., and Karlsson, K. A. (2000) Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology 10, 1193–1199.PubMedCrossRefGoogle Scholar
  16. 16.
    Prince, A. (1996) Pseudomonas aeruginosa: versatile attachment mechanisms. In: Bacterial Adhesion (Fletcher, M., ed.). Wiley-Liss, New York, pp. 183–199.Google Scholar
  17. 17.
    Lopez-Boado, Y. S., Wilson, C. L., Hooper, L. V., Gordon, J. I., and Hultgren, S. J. (2000) Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J. Cell Biol. 148, 1305–1315.PubMedCrossRefGoogle Scholar
  18. 18.
    Bry, L., Falk, P. G., Midtvedt, T., and Gordon, J. I. (1996) A model of host-microbial interactions in the an open mammalian ecosystem. Science 273, 1380–1383.PubMedCrossRefGoogle Scholar
  19. 19.
    Hooper, L. V. and Gordon, J. I. (2001) Commensal host-bacterial relationships in the gut. Science 292, 1115–1118.PubMedCrossRefGoogle Scholar
  20. 20.
    Klemm, P. and Schembri, M. A. (2000). Bacterial adhesions: function and structure. Int. J. Med. Microbiol. 290, 27–35.PubMedGoogle Scholar
  21. 21.
    Pinto, M., Robine-Leon, S., Appay, M. D., et al. (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47, 323–330.Google Scholar
  22. 22.
    Lesuffleur, T., Barbat, A., Dussaulx, E., and Zweibaum, A. (1990) Growth adaptation to methotrexate of HT-29 human colon carcinoma cells associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res. 50, 6334–6343.PubMedGoogle Scholar
  23. 23.
    Janet, F. F. and Gordon, G. F. (1987) Gastrointestinal mucus. In: Physiology of the Gastrointestinal Tract (Johnson, L. R., ed.). Raven, New York, pp. 1255–1284.Google Scholar
  24. 24.
    Mantle, M. (1996) The anti-adherent role of intestinal mucus: mechanisms and physiopathology. Mucus Dialogue On-line 2, 1–6.Google Scholar
  25. 25.
    Woods, D. E., Straus, D. C., Johanson, W. G., Berry, V. K., and Bass, J. A. (1980): Role of pili in adherence of a Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect. Immun. 29, 1146–1151.PubMedGoogle Scholar
  26. 26.
    He, F., Ouwehand, A. C., Isolauri, E., et al. (2001) Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr. Microbiol. 43, 351–354.PubMedCrossRefGoogle Scholar
  27. 27.
    Matsumoto, M., Tani, H., Ono, H., Ohishi, H., and Benno, Y. (2002) Adhesive property of Bifidobacterium lactis LYM 512 and predominant bacteria of intestinal microflora to human intestinal mucin. Curr. Microbiol. 44, 212–215.PubMedCrossRefGoogle Scholar
  28. 28.
    Ouwehand, A. C., Tuomola, E. M., Lee, Y. K., and Salminen, S. (2001) Microbial interactions to intestinal mucosal models. Methods Enzymol. 337, 200–212.PubMedCrossRefGoogle Scholar
  29. 29.
    Ouwehand, A. C., Conway, P. L., and Salminen, S. J. (1995) Inhibition of S-fimbria-mediated adhesion to human ileostomy glycoproteins by a protein isolated from bovine colostrums. Infect. Immun. 63, 4917–4920.PubMedGoogle Scholar
  30. 30.
    Apostolou, E., Pelto, L., Kirjavainen, P.V., Isolauri E., Salminen, S. J., and Gibson, G. R. (2001) Differences in the gut bacterial flora of healthy and milk-hypersensitive adults, as measured by fluorescence in situ hybridization. FEMS Immunol. Med. Microbiol. 30, 217–221.PubMedCrossRefGoogle Scholar
  31. 31.
    Freter, R., Stauffer, E., and Cleven, D. (1983) Continuous-flow cultures as in vitro models of the ecology of large intestinal flora. Infect Immun. 36, 666.Google Scholar
  32. 32.
    Wilson, K. H. and Perini, F. (1988) Role of competition for nutrients in suppression of Clostridum difficile by the colonic microflora. Infect Immun. 56, 2610.PubMedGoogle Scholar
  33. 33.
    Miller, T. L. and Wolin, M. J. (1981) Fermentation by the human large intestine microbial community in an semicontiuous culture system. Appl. Environ. Microbiol. 42, 400.PubMedGoogle Scholar
  34. 34.
    Minekus, M., Smeets-peeters, M., Bernakier, A., et al. (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and adsorption of fermentation products. Appl. Microbiol. Biotechnol. 53, 108–114.PubMedCrossRefGoogle Scholar
  35. 35.
    Coconnier, M. H., Liévin, V., Lorrot, M., and Servin, A. L. (2000) Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar typhimurium infecting human enterocyte-like Caco-2/TC-7 cells. Appl. Environ. Microbiol. 66, 1152–1157.PubMedCrossRefGoogle Scholar
  36. 36.
    Heinemann, C., van Hylckama Vlieg, J. E. T., Janssen, D. B., Busscher, H. J., van der Mei, H. C., and Reid, G. (2000) Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiol. Lett. 190, 177–180.PubMedCrossRefGoogle Scholar
  37. 37.
    Mack, D. R., Michail, S., Wei, S., McDougall, L., and Hollingsworth, M. A. (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. 276, G941–G950.PubMedGoogle Scholar
  38. 38.
    Chan, R. C. Y., Reid, G., Irvin, R. T., Bruce, A. W., and Costerton, J. W. (1985) Competitive exclusion of uropathogens from human uroepithelial cells by Lactobacillus whole cells and cell wall fragments. Infect. Immun. 47, 84–89.PubMedGoogle Scholar
  39. 39.
    Coconnier, M.-H., Bernet, M.-F., Kerneis, S., Chauviere, G., Fourniat, J., and Servin, A. L. (1993) Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. FEMS Microbiol. Lett. 110, 299–306.PubMedCrossRefGoogle Scholar
  40. 40.
    Osset, J., Bartolomé, R. M., Garcia, E., and Andreu, A. (2001) Assessment of the capacity of Lactobacillus to inhibit the growth of uropathogens and block their adhesion to vaginal epithelial cells. J. Infect. Dis. 183, 485–491.PubMedCrossRefGoogle Scholar
  41. 41.
    Tuomola, E. M., Ouwehand, A. C., and Salminen, S. J. (1999) The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol. Med. Microbiol. 26, 137–142.PubMedCrossRefGoogle Scholar
  42. 42.
    Neeser, J. R., Granato, D., Rouvet, M., Servin, A., Teneberg, S., and Karlsson, K. A. (2000) Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology 10, 1193–1199.PubMedCrossRefGoogle Scholar
  43. 43.
    Mukai, T., Asasaka, T., Sato, E., Mori, K., Matsumoto, M., and Ohori, H. (2002) Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunol. Med. Microbiol. 32, 105–110.PubMedCrossRefGoogle Scholar
  44. 44.
    Lim, B. K., Mahendran, R., and Lee, Y. K. (2002) Chemopreventive effect of Lactobacillus rhamnosus on growth of a subcutaneously implanted bladder cancer cell line in the mouse. Jpn. J. Cancer Res. 93, 36–51.PubMedGoogle Scholar
  45. 45.
    Aso, Y., Akaza, H., and Kotake, T. (1995) Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double blind clinical trial. Eur. Urol. 27, 104–109.PubMedGoogle Scholar
  46. 46.
    Yong, J. Y., Mahendran, R., Lee, Y. K., and Bay BH. Lactobacillus spp. potentiate GM-CSF and IL-8 production in malignant urothelial cells. Submitted.Google Scholar

Copyright information

© Humana Press Inc. Totowa, NJ 2004

Authors and Affiliations

  • Wei-Long Hao
    • 1
  • Yuan-Kun Lee
    • 1
  1. 1.Department of MicrobiologyNational University of SingaporeSingapore

Personalised recommendations