Genomics, Proteomics, and Clinical Bacteriology pp 261-287 | Cite as
Using the Genome to Understand Pathogenicity
Abstract
Genome sequencing, the determination of the complete complement of DNA in an organism, is revolutionizing all aspects of the biological sciences. Genome sequences make available for scientific scrutiny the complete genetic capacity of an organism. With respect to microbes, this means we now have the unprecedented opportunity to investigate the molecular basis of commensal and virulence behavior. We now have genome sequences for a wide range of bacterial pathogens (obligate, facultative, and opportunistic); this has facilitated the discovery of many previously unidentified determinants of pathogenicity and has provided novel insights into what creates a pathogen. In-depth analyses of bacterial genomes are also providing new perspectives on bacterial physiology, molecular adaptation to a preferred niche, and genomic susceptibility to the uptake of foreign DNA, three key factors that can play a significant role in determining whether a species, or a strain, will have pathogenic potential.
Key Words
Genome pathogenicity comparative genomics virulence determinants orphan genes physiology ecological niche adaptation horizontal gene transfer bacterial evolutionReferences
- 1.Wassenaar, T. M. and Gaastra, W. (2001) Bacterial virulence: can we draw the line? FEMS Microbiol. Lett. 201, 1–7.PubMedCrossRefGoogle Scholar
- 2.Moxon, R. and Tang, C. (2000) Challenge of investigating biologically relevant functions of virulence factors in bacterial pathogens. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 643–656.PubMedCrossRefGoogle Scholar
- 3.Groisman, E. A. and Ochman, H. (1997) How Salmonella became a pathogen. Trends Microbiol. 5, 343–349.PubMedCrossRefGoogle Scholar
- 4.Groisman, E. A. and Ochman, H. (1994) How to become a pathogen. Trends Microbiol. 2, 289–294.PubMedCrossRefGoogle Scholar
- 5.Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.PubMedCrossRefGoogle Scholar
- 6.Fraser, C. M., Norris, S. J., Weinstock, G. M., White, O., Sutton, G. G., Dodson, R., et al. (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375–388.PubMedCrossRefGoogle Scholar
- 7.Nowak, R. (1995) Bacterial genome sequence bagged. Science 269, 468–470.PubMedCrossRefGoogle Scholar
- 8.Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., et al. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.PubMedCrossRefGoogle Scholar
- 9.Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., et al. (1996) Life with 6000 genes. Science 546, 63–67.Google Scholar
- 10.Bernal, A., Ear, U., and Kyrpides, N. (2001) Genomes OnLine Database (GOLD): a monitor of genome projects world-wide. Nucleic Acids Res. 29, 126–127.PubMedCrossRefGoogle Scholar
- 11.Cole, S. T., Eiglmeier, K., Parkhill, J., James, K. D., Thomson, N. R., Wheeler, P. R., et al. (2001) Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011.PubMedCrossRefGoogle Scholar
- 12.Read, T. D., Brunham, R. C., Shen, C., Gill, S. R., Heidelberg, J. F., White, O., et al. (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 28, 1397–1406.PubMedCrossRefGoogle Scholar
- 13.Chambaud, I., Heilig, R., Ferris, S., Barbe, V., Samson, D., Galisson, F., et al. (2001) The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids Res. 29, 2145–2153.PubMedCrossRefGoogle Scholar
- 14.McClelland, M., Sanderson, K. E., Spieth, J., Clifton, S. W., Latreille, P., Courtney, L., et al. (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856.PubMedCrossRefGoogle Scholar
- 15.Field, D., Hood, D., and Moxon, R. (1999) Contribution of genomics to bacterial pathogenesis. Curr. Opin. Genet. Dev. 9, 700–703.PubMedCrossRefGoogle Scholar
- 16.Kalman, S., Mitchell, W., Marathe, R., Lammel, C., Fan, J., Hyman, R. W., et al. (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat. Genet. 21, 385–389.PubMedCrossRefGoogle Scholar
- 17.Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.PubMedCrossRefGoogle Scholar
- 18.Perna, N. T., Plunkett, G., 3rd, Burland, V., Mau, B., Glasner, J. D., Rose, D. J., et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533.PubMedCrossRefGoogle Scholar
- 19.Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., et al. (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8, 11–22.PubMedCrossRefGoogle Scholar
- 20.Moxon, R. and Rappuoli, R. (2002) Bacterial pathogen genomics and vaccines. Br. Med. Bull. 62, 45–58.PubMedCrossRefGoogle Scholar
- 21.Pizza, M., Scarlato, V., Masignani, V., Giuliani, M. M., Arico, B., Comanducci, M., et al. (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820.PubMedCrossRefGoogle Scholar
- 22.Tettelin, H., Saunders, N. J., Heidelberg, J., Jeffries, A. C., Nelson, K. E., Eisen, J. A., et al. (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815.PubMedCrossRefGoogle Scholar
- 23.Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann, R. D., et al. (1995) The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403.PubMedCrossRefGoogle Scholar
- 24.Hutchison, C. A., Peterson, S. N., Gill, S. R., Cline, R. T., White, O., Fraser, C. M., et al. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169.PubMedCrossRefGoogle Scholar
- 25.Fleischmann, R. D., Alland, D., Eisen, J. A., Carpenter, L., White, O., Peterson, J., et al. (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bact. 184, 5479–5490.PubMedCrossRefGoogle Scholar
- 26.Joyce, E. A., Chan, K., Salama, N. R., and Falkow, S. (2002) Redefining bacterial populations: a post-genomic reformation. Nat. Rev. Genet. 3, 462–473.PubMedGoogle Scholar
- 27.Heidelberg, J. F., Eisen, J. A., Nelson, W. C., Clayton, R. A., Gwinn, M. L., Dodson, R. J., et al. (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483.PubMedCrossRefGoogle Scholar
- 28.Lan, R. and Reeves, P. R. (2000) Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol. 8, 396–401.PubMedCrossRefGoogle Scholar
- 29.Lan, R. and Reeves, P. R. (2001) When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends Microbiol. 9, 419–424.PubMedCrossRefGoogle Scholar
- 30.Miller, W. (2001) Comparison of genomic DNA sequences: solved and unsolved problems. Bioinformatics 17, 391–397.PubMedCrossRefGoogle Scholar
- 31.Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G. D., and Maltsev, N. (1999) The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96, 2896–2901.PubMedCrossRefGoogle Scholar
- 32.Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964.PubMedCrossRefGoogle Scholar
- 33.Bayliss, C. D., Field, D., and Moxon, E. R. (2001) The simple sequence contingency loci of Haemophilus influenzae and Neisseria meningitidis. J. Clin. Invest. 107, 657–662.PubMedCrossRefGoogle Scholar
- 34.Schilling, C. H., Covert, M. W., Famili, I., Church, G. M., Edwards, J. S., and Palsson, B. O. (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J. Bacteriol. 184, 4582–4593.PubMedCrossRefGoogle Scholar
- 35.Edwards, J. S. and Palsson, B. O. (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97, 5528–5533.PubMedCrossRefGoogle Scholar
- 36.Oliver, S. G. (1996) From DNA sequence to biological function. Nature 379, 597–600.PubMedCrossRefGoogle Scholar
- 37.Fischer, D. and Eisenberg, D. (1999) Finding families for genomic ORFans. Bioinformatics 15, 759–762.PubMedCrossRefGoogle Scholar
- 38.Doolittle, R. F. (2002) Biodiversity: microbial genomes multiply. Nature 416, 697–700.PubMedCrossRefGoogle Scholar
- 39.Salama, N., Guillemin, K., McDaniel, T. K., Sherlock, G., Tompkins, L., and Falkow, S. (2000) A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl. Acad. Sci. USA 97, 14,668–14,673.PubMedCrossRefGoogle Scholar
- 40.Huynen, M. A., Diaz-Lazcoz, Y., and Bork, P. (1997) Differential genome display. Trends Genet. 13, 389–390.PubMedCrossRefGoogle Scholar
- 41.Casjens, S. (1998) The diverse and dynamic structure of bacterial genomes. Annu. Rev. Genet. 32, 339–377.PubMedCrossRefGoogle Scholar
- 42.Tamas, I., Klasson, L. M., Sandstrom, J. P., and Andersson, S. G. (2001) Mutualists and parasites: how to paint yourself into a (metabolic) corner. FEBS Lett. 498, 135–139.PubMedCrossRefGoogle Scholar
- 43.Andersson, J. O. and Andersson, S. G. (1999) Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 9, 664–671.PubMedCrossRefGoogle Scholar
- 44.Andersson, S. G., Zomorodipour, A., Andersson, J. O., Sicheritz-Ponten, T., Alsmark, U. C., Podowski, R. M., et al. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140.PubMedCrossRefGoogle Scholar
- 45.Ochman, H., Lawrence, J. G., and Groisman, E. A. (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304.PubMedCrossRefGoogle Scholar
- 46.Eisen, J. A. (2000) Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr. Opin. Genet. Dev. 10, 606–611.PubMedCrossRefGoogle Scholar
- 47.Nelson, K. E., Clayton, R. A., Gill, S. R., Gwinn, M. L., Dodson, R. J., Haft, D. H., et al. (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritime. Nature 399, 323–329.PubMedCrossRefGoogle Scholar
- 48.Smoot, J. C., Barbian, K. D., Van Gompel, J. J., Smoot, L. M., Chaussee, M. S., Sylva, G. L., et al. (2002) Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl. Acad. Sci. USA 99, 4668–4673.PubMedCrossRefGoogle Scholar
- 49.Knapp, S., Hacker, J., Jarchau, T., and Goebel, W. (1986) Large, unstable inserts in the chromosome affect virulence properties of uropathogenic Escherichia coli O6 strain 536. J. Bacteriol. 168, 22–30.PubMedGoogle Scholar
- 50.Finlay, B. B. and Falkow, S. (1997) Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61, 136–169.PubMedGoogle Scholar
- 51.Graham, D. E., Overbeek, R., Olsen, G. J., and Woese, C. R. (2000) An archaeal genomic signature. Proc. Natl. Acad. Sci. USA 97, 3304–3308.PubMedCrossRefGoogle Scholar
- 52.Weinstock, G. M. (2000) Genomics and bacterial pathogenesis. Emerg. Infect. Dis. 6, 496–504.PubMedCrossRefGoogle Scholar
- 53.Chizhikov, V., Rasooly, A., Chumakov, K., and Levy, D. D. (2001) Microarray analysis of microbial virulence factors. Appl. Environ. Microbiol. 67, 3258–3263.PubMedCrossRefGoogle Scholar
- 54.Mitchell, T. J. (1998) Molecular basis of virulence. Arch. Dis. Child. 78, 197–199; discussion 99–200.PubMedCrossRefGoogle Scholar
- 55.Fraser, C. M., Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigra, R., et al. (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586.PubMedCrossRefGoogle Scholar
- 56.Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.PubMedCrossRefGoogle Scholar
- 57.Wizemann, T. M., Heinrichs, J. H., Adamou, J. E., Erwin, A. L., Kunsch, C., Choi, G. H., et al. (2001) Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect. Immun. 69, 1593–1598.PubMedCrossRefGoogle Scholar
- 58.De Bolle, X., Bayliss, C. D., Field, D., van de Ven, T., Saunders, N. J., Hood, D. W., et al. (2000) The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol. Microbiol. 35, 211–222.PubMedCrossRefGoogle Scholar
- 59.Moxon, E. R., Rainey, P. B., Nowak, M. A., and Lenski, R. E. (1994) Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 24–33.PubMedCrossRefGoogle Scholar
- 60.Hood, D. W., Deadman, M. E., Jennings, M. P., Bisercic, M., Fleischmann, R. D., Venter, J. C., et al. (1996) DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 93, 11,121–11,125.PubMedCrossRefGoogle Scholar
- 61.Weiser, J. N. (2000) The generation of diversity by Haemophilus influenzae. Trends Microbiol. 8, 433–435.PubMedCrossRefGoogle Scholar
- 62.Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547.PubMedCrossRefGoogle Scholar
- 63.Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., et al. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.PubMedCrossRefGoogle Scholar
- 64.Parkhill, J., Achtman, M., James, K. D., Bentley, S. D., Churcher, C., Klee, S. R., et al. (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506.PubMedCrossRefGoogle Scholar
- 65.Tettelin, H., Nelson, K. E., Paulsen, I. T., Eisen, J. A., Read, T. D., Peterson, S., et al. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506.PubMedCrossRefGoogle Scholar
- 66.Dziejman, M., Balon, E., Boyd, D., Fraser, C. M., Heidelberg, J. F., and Mekalanos, J. J. (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 99, 1556–1561.PubMedCrossRefGoogle Scholar
- 67.Dorrell, N., Mangan, J. A., Laing, K. G., Hinds, J., Linton, D., Al-Ghusein, H., et al. (2001) Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11, 1706–1715.PubMedCrossRefGoogle Scholar
- 68.Behr, M. A., Wilson, M. A., Gill, W. P., Salamon, H., Schoolnik, G. K., Rane, S., et al. (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284, 1520–1523.PubMedCrossRefGoogle Scholar
- 69.Riley, M. (1993) Functions of the gene products of Escherichia coli. Microbiol. Rev. 57, 862–952.PubMedGoogle Scholar
- 70.Fraser, C. M., Eisen, J., Fleischmann, R. D., Ketchum, K. A., and Peterson, S. (2000) Comparative genomics and understanding of microbial biology. Emerg. Infect. Dis. 6, 505–512.PubMedCrossRefGoogle Scholar
- 71.Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T., et al. (2002) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 99, 996–1001.PubMedCrossRefGoogle Scholar
- 72.Kapatral, V., Anderson, I., Ivanova, N., Reznik, G., Los, T., Lykidis, A., et al. (2002) Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J. Bact. 184, 2005–2018.PubMedCrossRefGoogle Scholar
- 73.Smith, H. O., Tomb, J. F., Dougherty, B. A., Fleischmann, R. D., and Venter, J. C. (1995) Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269, 538–540.PubMedCrossRefGoogle Scholar
- 74.Frank, A. C., Amiri, H., and Andersson, S. G. (2002) Genome deterioration: loss of repeated sequences and accumulation of junk DNA. Genetica 115, 1–12.PubMedCrossRefGoogle Scholar
- 75.Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., et al. (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240.PubMedCrossRefGoogle Scholar
- 76.Glaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend, A., Baquero, F., et al. (2001) Comparative genomics of Listeria species. Science 294, 849–852.PubMedGoogle Scholar
- 77.Thompson, J. N. (1999) The evolution of species interactions. Science 284, 2116–2118.PubMedCrossRefGoogle Scholar
- 78.Stein, L. (2002) Creating a bioinformatics nation. Nature 417, 119–120.PubMedCrossRefGoogle Scholar