Protein-Protein Interactions pp 313-326

Part of the Methods in Molecular Biology book series (MIMB, volume 261)

Reverse Two-Hybrid Techniques in the Yeast Saccharomyces cerevisiae

  • Matthew A. Bennett
  • Jack F. Shern
  • Richard A. Kahn

Abstract

Use of the yeast two-hybrid system has provided definition to many previously uncharacterized pathways through the identification and characterization of novel protein-protein interactions. The two-hybrid system uses the bi-functional nature of transcription factors, such as the yeast enhancer Gal4, to allow protein-protein interactions to be monitored through changes in transcription of reporter genes. Once a positive interaction has been identified, either of the interacting proteins can mutate, either by site-specific or randomly introduced changes, to produce proteins with a decreased ability to interact. Mutants generated using this strategy are very powerful reagents in tests of the biological significance of the interaction and in defining the residues involved in the interaction. Such techniques are termed reverse two-hybrid methods. We describe a reverse two-hybrid method that generates loss-of-interaction mutations of the catalytic subunit of the Escherichia coli heat-labile toxin (LTA1) with decreased binding to the active (GTP-bound) form of human ARF3, its protein cofactor.

Key Words

Reverse two-hybrid two-hybrid protein interaction loss-of-interaction mutation 

References

  1. 1.
    Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.PubMedCrossRefGoogle Scholar
  2. 2.
    Chien, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582.PubMedCrossRefGoogle Scholar
  3. 3.
    Boman, A. L., Zhang, C, Zhu, X., and Kahn, R. A. (2000) A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell 11, 1241–1255.PubMedGoogle Scholar
  4. 4.
    Van Valkenburgh, H., Shern, J. F., Sharer, J. D., Zhu, X., and Kahn, R. A. (2001) ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J. Biol. Chem. 276, 22,826–22,837.PubMedCrossRefGoogle Scholar
  5. 5.
    Uetz, P., Giot, L., Cagney, G, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.PubMedCrossRefGoogle Scholar
  6. 6.
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu, X., Kim, E., Boman, A. L., Hodel, A., Cieplak, W., and Kahn, R. A. (2001) ARF binds the C-terminal region of the Escherichia coli heat-labile toxin (LTA1) and competes for the binding of LTA2. Biochemistry 40, 4560–4568.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu, X. and Kahn, R. A. (2001) The Escherichia coli heat labile toxin binds to Golgi membranes and alters Golgi and cell morphologies using ADP-ribosylation factor-dependent processes. J. Biol. Chem. 276, 25,014–25,021.PubMedCrossRefGoogle Scholar
  9. 9.
    Cadwell, R. C. and Joyce, G. F. (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 28–33.PubMedGoogle Scholar
  10. 10.
    Leanna, C. A. and Hannink, M. (1996) The reverse two-hybrid system: a genetic scheme for selection against specific protein/protein interactions. Nucleic Acids Res. 24, 3341–3347.PubMedCrossRefGoogle Scholar
  11. 11.
    Vidal, M., Brachmann, R. K., Fattaey, A., Harlow, E., and Boeke, J. D. (1996) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc. Natl. Acad. Sci. USA 93, 10,315–10,320.PubMedCrossRefGoogle Scholar
  12. 12.
    Puthalakath, H., Strasser, A., and Huang, D. C. (2001) Rapid selection against truncation mutants in yeast reverse two-hybrid screens. Biotechniques 30, 984–988.PubMedGoogle Scholar
  13. 13.
    Durfee, T., Becherer, K., Chen, P. L., et al. (1993) The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555–569.PubMedCrossRefGoogle Scholar
  14. 14.
    Boman, A. L., Kuai, J., Zhu, X., Chen, J., Kuriyama, R. and Kahn, R. A. (1999) Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion. Cell Motil. Cytoskeleton. 44, 119–132.PubMedCrossRefGoogle Scholar
  15. 15.
    Muhlrad, D., Hunter, R., and Parker, R. (1992) A rapid method for localized mutagenesis of yeast genes. Yeast 8, 79–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Kuai, J., Boman, A. L., Arnold, R. S., Zhu, X., and Kahn, R. A. (2000) Effects of activated ADP-ribosylation factors on Golgi morphology require neither activation of phospholipase D1 nor recruitment of coatomer. J. Biol. Chem. 275, 4022–4032.PubMedCrossRefGoogle Scholar
  17. 17.
    Bai, C. and Elledge, S. J. (1996) Gene identification using the yeast two-hybrid system. Methods Enzymol. 273, 331–347.PubMedCrossRefGoogle Scholar
  18. 18.
    Rose, M. D., Winston, F., and Hieter, P. (1990) Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  19. 19.
    Horvath, A. and Riezman, H. (1994) Rapid protein extraction from Saccharomyces cerevisiae. Yeast 10, 1305–1310.PubMedCrossRefGoogle Scholar
  20. 20.
    Bartel, P., Chien, C. T., Sternglanz, R., and Fields, S. (1993) Elimination of false positives that arise in using the two-hybrid system. Biotechniques 14, 920–924.PubMedGoogle Scholar
  21. 21.
    James, P., Halladay, J., and Craig, E. A. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436.PubMedGoogle Scholar
  22. 22.
    Brent, R. and Finley, R. L., Jr. (1997) Understanding gene and allele function with two-hybrid methods. Annu. Rev. Genet. 31, 663–704.PubMedCrossRefGoogle Scholar
  23. 23.
    Vidal, M. and Legrain, P. (1999) Yeast forward and reverse ‘n’-hybrid systems. Nucleic Acids Res. 27, 919–929.PubMedCrossRefGoogle Scholar
  24. 24.
    Shafikhani, S., Siegel, R. A., Ferrari, E., and Schellenberger, V. (1997) Generation of large libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization. Biotechniques 23, 304–310.PubMedGoogle Scholar
  25. 25.
    Guarente, L. (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101, 181–191.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Matthew A. Bennett
    • 1
  • Jack F. Shern
    • 1
  • Richard A. Kahn
    • 1
  1. 1.Department of BiochemistryEmory University School of MedicineAtlanta

Personalised recommendations