Bacterial Artificial Chromosomes pp 279-294

Part of the Methods in Molecular Biology™ book series (MIMB, volume 255)

Using the TIGR Assembler in Shotgun Sequencing Projects

  • Mihai Pop
  • Dan Kosack

Abstract

The TIGR Assembler (TA) (1) is the sequence assembly program used in sequencing projects at The Institute for Genomic Research (TIGR). Development of the TA was based on the experience obtained in more than 20 sequencing projects completed at TIGR (seehttp://www.tigr.org). This extensive experience led to a sequence assembler that produces few misassemblies (2,3) and has been used successfully in whole-genome shotgun sequencing of prokaryotic and eukaryotic organisms, bacterial artificial chromosome-based sequencing of eukaryotic organisms, and expressed sequence tag assembly.

References

  1. 1.
    Sutton, G. G., White, O., Adams, M. D., and Kerlavage, A. R. (1995) TIGR Assembler: a new tool for assembling large shotgun sequencing projects. Genome Sci. Technol. 1, 9–19.Google Scholar
  2. 2.
    Liang, F., Holt, I., Pertea, G., Karamycheva, S., Salzberg, S. L., and Quackenbush, J. (2000) An optimized protocol for analysis of EST sequences. Nucleic Acids Res. 28(18), 3657–3665.PubMedCrossRefGoogle Scholar
  3. 3.
    Pevzner, P., Tang, H., and Waterman, M. S. (2001) A new approach to fragment assembly in DNA sequencing, in Proceedings of the Fifth Annual International Conference on Computational Biology (RECOMB). (Istrail, Lengauer, Pevzner, Sankoff, and Waterman, eds.), Association for Computing Machinery, Montreal, Canada. pp. 256–265.CrossRefGoogle Scholar
  4. 4.
    Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.PubMedGoogle Scholar
  5. 5.
    Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.PubMedGoogle Scholar
  6. 6.
    Staden, R. (1979) A strategy of DNA sequencing employing computer programs. Nucleic Acids Res. 6(7), 2601–2610.PubMedCrossRefGoogle Scholar
  7. 7.
    Tarhio, J. and Ukkonen, E. (1988) A greedy approximation algorithm for constructing shortest common superstrings. Theoret. Comput. Sci. 57, 131–145.CrossRefGoogle Scholar
  8. 8.
    Smith, T. F. and Waterman, M. S. (1981) Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.PubMedCrossRefGoogle Scholar
  9. 9.
    Gribskov, M., McLachlan, A. D., and Eisenberg, D. (1987) Profile analysis: detection of distantly related proteins. Proc. Natl. Acad. Sci. USA 84, 4355–4358.PubMedCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Huang, X. (1996) An improved sequence assembly program. Genomics 33, 21–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Huang, X. and Madan, A. (1999) CAP3: a DNA sequence assembly program. Genome Res. 9(9), 867–877.CrossRefGoogle Scholar
  13. 13.
    Pearson, W. R. (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183, 63–98.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith, S. W., Overbeek, R., Woese, C. R., Gilbert, W., and Gillevet, P. M. (1994) The genetic data environment and expandable GUI for multiple sequence analysis. Comput. Appl. Biosci. 10(6), 671–675.PubMedGoogle Scholar
  15. 15.
    Thierry-Mieg, J. and Durbin, R. (1992) ACEDB—a C. elegans database: syntactic definitions for the ACEDB data base manager, 1992 (http://www.acedb.org).
  16. 16.
    Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Mihai Pop
    • 1
  • Dan Kosack
    • 1
  1. 1.The Institute for Genomic ResearchRockville

Personalised recommendations