RNA Interference by Short Hairpin RNAs Expressed in Vertebrate Cells

  • Gregory J. Hannon
  • Douglas S. Conklin
Part of the Methods in Molecular Biology™ book series (MIMB, volume 257)

Abstract

RNA interference (RNAi) is now established as a general method to silence gene expression in a variety of organisms. Double-stranded RNA (dsRNA), when introduced to cells, interferes with the expression of homologous genes, disrupting their normal function. In mammals, transient delivery of synthetic short interfering RNAs (siRNAs), which resemble the processed form of standard double stranded RNAi triggers, is effective in silencing mammalian genes. Issues related to transfer efficiency and duration of the silencing effect, however, restrict the spectrum of the applications of siRNAs in mammals. These shortcomings of siRNAs have been solved by the cellular expression of short hairpin RNAs (shRNAs) from DNA vectors. shRNAs are indistinguishable from siRNAs in terms of efficacy and mechanism but can be produced within cells from standard mammalian expression vectors. In this way, shRNA expression makes possible the creation of continuous cell lines and transgenic animals in which suppression of a target gene is stably maintained by RNAi. As a result, the types of RNAi-based gene function analysis that can be carried out in mammals have been greatly expanded. We describe methods for the construction and transfer of stable shRNA expressing vectors suitable for generating loss of function alleles in mammalian cells in vitro or in vivo.

Key Words

RNAi gene silencing retrovirus knock-outs mammalian genetics 

References

  1. 1.
    Bleicher, K. H., Bohm, H. J., Muller, K., and Alanine, A. I. (2003) Hit and lead generation: beyond high-throughput screening. Nat. Rev. Drug Dis. 2, 369–378.CrossRefGoogle Scholar
  2. 2.
    Chanda, S. K. and Caldwell, J. S. (2003) Fulfilling the promise: drug discovery in the post-genomic era. Drug Dis. Today 8, 168–174.CrossRefGoogle Scholar
  3. 3.
    Kanehisa, M., and Bork, P. (2003) Bioinformatics in the post-sequence era. Nat. Genet. 33, 305–310.PubMedCrossRefGoogle Scholar
  4. 4.
    Voorhoeve, P. M., and Agami, R. (2003) Knockdown stands up. Trends Biotechnol. 21, 2–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Shi, Y. (2003) Mammalian RNAi for the masses. Trends Genet. 19, 9–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Marcus, P. I. and Sekellick, M. J. (1985) Interferon induction by viruses. XIII. Detection and assay of interferon induction-suppressing particles. Virology 142, 411–415.PubMedCrossRefGoogle Scholar
  8. 8.
    Gil, J. and Esteban, M. (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107–114.PubMedCrossRefGoogle Scholar
  9. 9.
    Hannon, G. J. (2002) RNA interference. Nature 418, 244–251.PubMedCrossRefGoogle Scholar
  10. 10.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.PubMedCrossRefGoogle Scholar
  11. 11.
    Stein, P., Svoboda, P., Anger, M., and Schultz, R. M. (2003) RNAi: Mammalian oocytes do it without RNA-dependent RNA polymerase. RNA 9, 187–192.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., and Waterhouse, P. M. (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407, 319–320.PubMedCrossRefGoogle Scholar
  13. 13.
    Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A., and Driscoll, M. (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat. Genet. 24, 180–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Kennerdell, J. R. and Carthew, R. W. (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nat. Biotechnol. 18, 896–898.PubMedCrossRefGoogle Scholar
  15. 15.
    Chuang, C. F. and Meyerowitz, E. M. (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97, 4985–4990.PubMedCrossRefGoogle Scholar
  16. 16.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.PubMedCrossRefGoogle Scholar
  17. 17.
    McManus, M. T., Petersen, C. P., Haines, B. B., Chen, J., and Sharp, P. A. (2002) Gene silencing using micro-RNA designed hairpins. RNA 8, 842–850.PubMedCrossRefGoogle Scholar
  18. 18.
    Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., and Conklin, D. S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958.PubMedCrossRefGoogle Scholar
  19. 19.
    Paul, C. P., Good, P. D., Winer, I., and Engelke, D. R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508.PubMedCrossRefGoogle Scholar
  20. 20.
    Sui, G., Soohoo, C., Affarel, B., Gay, F., Shi, Y., and Forrester, W. C. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Yu, J. Y., DeRuiter, S. L., and Turner, D. L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047–6052.PubMedCrossRefGoogle Scholar
  22. 22.
    McCaffrey, A. P., Meuse, L., Pham, T. T., Conklin, D. S., Hannon, G. J., and Kay, M. A. (2002) RNA interference in adult mice. Nature 418, 38–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J., and Rosenquist, T. A. (2003) Germline transmission of RNAi in mice. Nat. Struct. Biol. 10, 91–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Hemann, M. T., Fridman, J. S., Zilfou, J. T., Hernando, E., Paddison, P. J., Cordon-Cardo, C., et al. (2003) An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet. 33, 396–400.PubMedCrossRefGoogle Scholar
  25. 25.
    Hasuwa, H., Kaseda, K., Einarsdottir, T., and Okabe, M. (2002) Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. 532, 227–230.PubMedCrossRefGoogle Scholar
  26. 26.
    Cherington, V., and Higgins, C. (2001) Using retroviral vectors to express SV40 tumor antigens. Meth. Mol. Biol. 165, 129–150.Google Scholar
  27. 27.
    Goomer, R. S., and Kunkel, G. R. (1992) The transcriptional start site for a human U6 small nuclear RNA gene is dictated by a compound promoter element consisting of the PSE and the TATA box. Nucleic Acids Res. 20, 4903–4912.PubMedCrossRefGoogle Scholar
  28. 28.
    Yu, J. Y., Taylor, J., DeRuiter, S. L., Vojtek, A. B., and Turner, D. L. (2003) Simultaneous inhibition of GSK3alpha and GSK3beta using hairpin siRNA expression vectors. Mol. Ther. 7, 228–236.PubMedCrossRefGoogle Scholar
  29. 29.
    McManus, M. T., Haines, B. B., Dillon, C. P., Whitehurst, C. E., van Parijs, L., Chen, J., and Sharp, P. A. (2002) Small interfering RNA-mediated gene silencing in T lymphocytes. J. Immunol. 169, 5754–5760.PubMedGoogle Scholar
  30. 30.
    Ge, Q., McManus, M. T., Nguyen, T., Shen, C. H., Sharp, P. A., Eisen, H. N., and Chen, J. (2003) RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA 100, 2718–2723.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Gregory J. Hannon
    • 1
  • Douglas S. Conklin
    • 2
  1. 1.Cold Spring Harbor LaboratoryCold Spring Harbor
  2. 2.Center for Functional GenomicsUniversity at Albany-SUNYRensselaer

Personalised recommendations