A Poly(A) Tail-Responsive In Vitro System for Cap- or IRES-Driven Translation From HeLa Cells

  • Christian Thoma
  • Antje Ostareck-Lederer
  • Matthias W. Hentze
Part of the Methods in Molecular Biology™ book series (MIMB, volume 257)

Abstract

In cells, the poly(A) tail stimulates translation from messenger RNAs bearing a cap structure or viral IRES elements. This 3′ end-mediated stimulation of translation is not reflected in commonly used commercial cell-free translation systems prepared from rabbit reticulocytes or wheat germ. We describe a simple procedure to generate poly(A) tail-responsive translation extracts from HeLa cells. We suggest that this procedure should be adaptable to many animal cell lines.

Key Words

Poly(A) tail cap structure internal ribosome entry site (IRES) translation RNA stability 

References

  1. 1.
    Gallie, D. R. (1991) The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116.PubMedCrossRefGoogle Scholar
  2. 2.
    Tarun, S. Z. Jr and Sachs, A. B. (1995) A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9, 2997–3007.PubMedCrossRefGoogle Scholar
  3. 3.
    Sachs, A. B., Sarnow, P., and Hentze M. W. (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89, 831–838.PubMedCrossRefGoogle Scholar
  4. 4.
    Preiss, T. and Hentze, M. W. (1998) Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392, 516–520.PubMedCrossRefGoogle Scholar
  5. 5.
    Tarun, S. Z. Jr and Sachs, A. B. (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15, 7168–77.PubMedGoogle Scholar
  6. 6.
    Le, H., Tanguay, R. L., Balasta, M. L., Wie, C. C., Browning, K. S., Metz, A. M., Goss, D. J., and Gallie, D. R. (1997) Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J. Biol. Chem. 272, 16247–16255.PubMedCrossRefGoogle Scholar
  7. 7.
    Imataka, H., Gradi, A., and Sonenberg, N. (1998) A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17, 7480–7489PubMedCrossRefGoogle Scholar
  8. 8.
    Pelletier, J. and Sonenberg, N. (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.PubMedCrossRefGoogle Scholar
  9. 9.
    Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C., and Wimmer, E. (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643.PubMedGoogle Scholar
  10. 10.
    Kaminski, A., Howell, M. T., and Jackson, R. J. (1990) Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO J. 9, 3753–3759.PubMedGoogle Scholar
  11. 11.
    Kaminski, A., Belsham, G. J., and Jackson, R. J. (1994) Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site. EMBO J. 13, 1673–1681.PubMedGoogle Scholar
  12. 12.
    Macejak, D. G. and Sarnow, P. (1991) Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353, 90–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Michel, Y. M., Poncet, D., Piron, M., Kean, K. M., and Borman, A. M. (2000) Cap-Poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-mediated stimulation of translation initiation. J. Biol. Chem. 275, 32,268–32,276.PubMedCrossRefGoogle Scholar
  14. 14.
    Bergamini, G., Preiss, T., and Hentze, M. W. (2000) Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system. RNA 6, 1781–1790.PubMedCrossRefGoogle Scholar
  15. 15.
    Svitkin, Y. V., Imataka, H., Khaleghpour, K., Kahvejian, A., Liebig, H. D., and Sonenberg, N. (2001) Poly(A)-binding protein interaction with elF4G stimulates picornavirus IRES-dependent translation. RNA 7, 1743–1752.PubMedCrossRefGoogle Scholar
  16. 16.
    Jackson, R. J. and Hunt, T. (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Meth. Enzymol. 96, 50–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Both, G. W., Banerjee, A. K., and Shatkin, A. J. (1975) Methylation-dependent translation of viral messenger RNAs in vitro. Proc. Natl. Acad. Sci. USA 72, 1189–1193.PubMedCrossRefGoogle Scholar
  18. 18.
    Iizuka, N., Najita, L., Franzusoff, A., and Sarnow, P. (1994) Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol. Cell Biol. 14, 7322–7330.PubMedGoogle Scholar
  19. 19.
    Gebauer, F., Corona, D. F., Preiss, T., Becker, P. B., and Hentze, M. W. (1999) Translational control of dosage compensation in Drosophila by Sex-lethal: cooperative silencing via the 5′ and 3′ untranslated regions of msl-2 mRNA is independent of the poly(A) tail. EMBO J. 18, 6146–6154.PubMedCrossRefGoogle Scholar
  20. 20.
    Stripecke, R. and Hentze, M. W. (1992) Bacteriophage and spliceosomal proteins function as position-dependent cis/trans repressors of mRNA translation in vitro. Nucleic Acids Res. 20, 5555–5564.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Christian Thoma
    • 1
  • Antje Ostareck-Lederer
    • 2
  • Matthias W. Hentze
    • 1
  1. 1.Gene Expression ProgrammeEMBLHeidelbergGermany
  2. 2.Anadys Pharmaceuticals Europe GmbHHeidelbergGermany

Personalised recommendations